Chapter 2: Problem 139
Consider a large plane wall of thickness \(L=0.8 \mathrm{ft}\) and thermal conductivity \(k=1.2 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\). The wall is covered with a material that has an emissivity of \(\varepsilon=0.80\) and a solar absorptivity of \(\alpha=0.60\). The inner surface of the wall is maintained at \(T_{1}=520 \mathrm{R}\) at all times, while the outer surface is exposed to solar radiation that is incident at a rate of \(\dot{q}_{\text {solar }}=300 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}\). The outer surface is also losing heat by radiation to deep space at \(0 \mathrm{~K}\). Determine the temperature of the outer surface of the wall and the rate of heat transfer through the wall when steady operating conditions are reached.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.