Chapter 2: Problem 132
How do you distinguish a linear differential equation from a nonlinear one?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 132
How do you distinguish a linear differential equation from a nonlinear one?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeA pipe is used for transporting boiling water in which the inner surface is at \(100^{\circ} \mathrm{C}\). The pipe is situated in surroundings where the ambient temperature is \(10^{\circ} \mathrm{C}\) and the convection heat transfer coefficient is \(70 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The wall thickness of the pipe is \(3 \mathrm{~mm}\) and its inner diameter is \(30 \mathrm{~mm}\). The pipe wall has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where \(k_{0}=1.23 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \beta=0.002 \mathrm{~K}^{-1}\), and \(T\) is in \(\mathrm{K}\). For safety reasons and to prevent thermal burn to workers, the outer surface temperature of the pipe should be kept below \(50^{\circ} \mathrm{C}\). Determine whether the outer surface temperature of the pipe is at a safe temperature so as to avoid thermal burn.
The outer surface of an engine is situated in a place where oil leakage can occur. Some oils have autoignition temperatures of approximately above \(250^{\circ} \mathrm{C}\). When oil comes in contact with a hot engine surface that has a higher temperature than its autoignition temperature, the oil can ignite spontaneously. Treating the engine housing as a plane wall, the inner surface \((x=0)\) is subjected to \(6 \mathrm{~kW} / \mathrm{m}^{2}\) of heat. The engine housing \((k=13.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) has a thickness of \(1 \mathrm{~cm}\), and the outer surface \((x=L)\) is exposed to an environment where the ambient air is \(35^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of \(20 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). To prevent fire hazard in the event the leaked oil comes in contact with the hot engine surface, the temperature of the engine surface should be kept below \(200^{\circ} \mathrm{C}\). Determine the variation of temperature in the engine housing and the temperatures of the inner and outer surfaces. Is the outer surface temperature of the engine below the safe temperature?
What is the geometrical interpretation of a derivative? What is the difference between partial derivatives and ordinary derivatives?
A cylindrical nuclear fuel rod of \(1 \mathrm{~cm}\) in diameter is encased in a concentric tube of \(2 \mathrm{~cm}\) in diameter, where cooling water flows through the annular region between the fuel rod \((k=30 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) and the concentric tube. Heat is generated uniformly in the rod at a rate of \(50 \mathrm{MW} / \mathrm{m}^{3}\). The convection heat transfer coefficient for the concentric tube surface is \(2000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). If the surface temperature of the concentric tube is \(40^{\circ} \mathrm{C}\), determine the average temperature of the cooling water. Can one use the given information to determine the surface temperature of the fuel rod? Explain.
Consider steady one-dimensional heat conduction in a plane wall in which the thermal conductivity varies linearly. The error involved in heat transfer calculations by assuming constant thermal conductivity at the average temperature is \((a)\) none, \((b)\) small, or \((c)\) significant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.