Chapter 2: Problem 129
What is the difference between an algebraic equation and a differential equation?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 129
What is the difference between an algebraic equation and a differential equation?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a steam pipe of length \(L=30 \mathrm{ft}\), inner radius \(r_{1}=2\) in, outer radius \(r_{2}=2.4\) in, and thermal conductivity \(k=7.2 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\). Steam is flowing through the pipe at an average temperature of \(300^{\circ} \mathrm{F}\), and the average convection heat transfer coefficient on the inner surface is given to be \(h=12.5 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\). If the average temperature on the outer surfaces of the pipe is \(T_{2}=175^{\circ} \mathrm{F},(a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the pipe, \((b)\) obtain a relation for the variation of temperature in the pipe by solving the differential equation, and \((c)\) evaluate the rate of heat loss from the steam through the pipe.
Consider steady one-dimensional heat conduction through a plane wall, a cylindrical shell, and a spherical shell of uniform thickness with constant thermophysical properties and no thermal energy generation. The geometry in which the variation of temperature in the direction of heat transfer will be linear is (a) plane wall (b) cylindrical shell (c) spherical shell (d) all of them (e) none of them
A circular metal pipe has a wall thickness of \(10 \mathrm{~mm}\) and an inner diameter of \(10 \mathrm{~cm}\). The pipe's outer surface is subjected to a uniform heat flux of \(5 \mathrm{~kW} / \mathrm{m}^{2}\) and has a temperature of \(500^{\circ} \mathrm{C}\). The metal pipe has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where \(k_{0}=7.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), \(\beta=0.0012 \mathrm{~K}^{-1}\), and \(T\) is in \(\mathrm{K}\). Determine the inner surface temperature of the pipe.
Consider a 20-cm-thick large concrete plane wall \((k=0.77 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) subjected to convection on both sides with \(T_{\infty 1}=27^{\circ} \mathrm{C}\) and \(h_{1}=5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the inside, and \(T_{\infty 2}=8^{\circ} \mathrm{C}\) and \(h_{2}=12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) on the outside. Assuming constant thermal conductivity with no heat generation and negligible radiation, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the temperatures at the inner and outer surfaces of the wall.
Consider a large plane wall of thickness \(L=0.3 \mathrm{~m}\), thermal conductivity \(k=2.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and surface area \(A=\) \(12 \mathrm{~m}^{2}\). The left side of the wall at \(x=0\) is subjected to a net heat flux of \(\dot{q}_{0}=700 \mathrm{~W} / \mathrm{m}^{2}\) while the temperature at that surface is measured to be \(T_{1}=80^{\circ} \mathrm{C}\). Assuming constant thermal conductivity and no heat generation in the wall, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, \((b)\) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the temperature of the right surface of the wall at \(x=L\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.