Chapter 2: Problem 119
A spherical vessel is filled with chemicals undergoing an exothermic reaction. The reaction provides a uniform heat flux on the inner surface of the vessel. The inner diameter of the vessel is \(5 \mathrm{~m}\) and its inner surface temperature is at \(120^{\circ} \mathrm{C}\). The wall of the vessel has a variable thermal conductivity given as \(k(T)=k_{0}(1+\beta T)\), where \(k_{0}=1.01 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), \(\beta=0.0018 \mathrm{~K}^{-1}\), and \(T\) is in \(\mathrm{K}\). The vessel is situated in a surrounding with an ambient temperature of \(15^{\circ} \mathrm{C}\), the vessel's outer surface experiences convection heat transfer with a coefficient of \(80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). To prevent thermal burn on skin tissues, the outer surface temperature of the vessel should be kept below \(50^{\circ} \mathrm{C}\). Determine the minimum wall thickness of the vessel so that the outer surface temperature is \(50^{\circ} \mathrm{C}\) or lower.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.