Chapter 14: Problem 54
The solubility of hydrogen gas in steel in terms of its mass fraction is given as \(w_{\mathrm{H}_{2}}=2.09 \times 10^{-4} \exp (-3950 / T) P_{\mathrm{H}_{2}}^{0.5}\) where \(P_{\mathrm{H}_{2}}\) is the partial pressure of hydrogen in bars and \(T\) is the temperature in \(\mathrm{K}\). If natural gas is transported in a 1-cm-thick, 3-m-internal-diameter steel pipe at \(500 \mathrm{kPa}\) pressure and the mole fraction of hydrogen in the natural gas is 8 percent, determine the highest rate of hydrogen loss through a 100 -m-long section of the pipe at steady conditions at a temperature of \(293 \mathrm{~K}\) if the pipe is exposed to air. Take the diffusivity of hydrogen in steel to be \(2.9 \times 10^{-13} \mathrm{~m}^{2} / \mathrm{s}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.