Chapter 14: Problem 176
A sphere of ice, \(5 \mathrm{~cm}\) in diameter, is exposed to \(50 \mathrm{~km} / \mathrm{h}\) wind with 10 percent relative humidity. Both the ice sphere and air are at \(-1^{\circ} \mathrm{C}\) and \(90 \mathrm{kPa}\). Predict the rate of evaporation of the ice in \(\mathrm{g} / \mathrm{h}\) by use of the following correlation for single spheres: Sh \(=\left[4.0+1.21(\mathrm{ReSc})^{2 / 3}\right]^{0.5}\). Data at \(-1^{\circ} \mathrm{C}\) and \(90 \mathrm{kPa}: D_{\text {air- } \mathrm{H}, \mathrm{O}}=2.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}^{3}\), kinematic viscosity (air) \(=1.32 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}\), vapor pressure \(\left(\mathrm{H}_{2} \mathrm{O}\right)=\) \(0.56 \mathrm{kPa}\) and density (ice) \(=915 \mathrm{~kg} / \mathrm{m}^{3}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.