Chapter 14: Problem 104
Methanol ( \(\rho=791 \mathrm{~kg} / \mathrm{m}^{3}\) and \(\left.M=32 \mathrm{~kg} / \mathrm{kmol}\right)\) undergoes evaporation in a vertical tube with a uniform cross-sectional area of \(0.8 \mathrm{~cm}^{2}\). At the top of the tube, the methanol concentration is zero, and its surface is \(30 \mathrm{~cm}\) from the top of the tube (Fig. P14-104). The methanol vapor pressure is \(17 \mathrm{kPa}\), with a mass diffusivity of \(D_{A B}=0.162 \mathrm{~cm}^{2} / \mathrm{s}\) in air. The evaporation process is operated at \(25^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\). (a) Determine the evaporation rate of the methanol in \(\mathrm{kg} / \mathrm{h}\) and \((b)\) plot the mole fraction of methanol vapor as a function of the tube height, from the methanol surface \((x=0)\) to the top of the tube \((x=L)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.