Chapter 14: Problem 103
The mass diffusivity of ethanol \(\left(\rho=789 \mathrm{~kg} / \mathrm{m}^{3}\right.\) and \(M=46 \mathrm{~kg} / \mathrm{kmol}\) ) through air was determined in a Stefan tube. The tube has a uniform cross-sectional area of \(0.8 \mathrm{~cm}^{2}\). Initially, the ethanol surface was \(10 \mathrm{~cm}\) from the top of the tube; and after 10 hours have elapsed, the ethanol surface was \(25 \mathrm{~cm}\) from the top of the tube, which corresponds to \(0.0445 \mathrm{~cm}^{3}\) of ethanol being evaporated. The ethanol vapor pressure is \(0.0684\) atm, and the concentration of ethanol is zero at the top of the tube. If the entire process was operated at \(24^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\), determine the mass diffusivity of ethanol in air.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.