Chapter 13: Problem 68
\(3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), and both natural convection and radiation heat transfer occur at the outer shield surface. To keep the ammonia inside the tube in its liquid state, determine the surrounding temperature that would maintain temperatures of the outer tube and the shield at the specified values. 13-68 PtD A hot liquid is being transported inside a long tube with a diameter of \(25 \mathrm{~mm}\). The hot liquid causes the tube surface temperature to be \(150^{\circ} \mathrm{C}\). To prevent thermal burn hazards, the tube is enclosed with a concentric outer cylindrical cover of \(5 \mathrm{~cm}\) in diameter allowing a vacuumed gap in between the two surfaces. The concentric outer cover has an emissivity of \(0.6\) and the outer surface is exposed to natural convection with a heat transfer coefficient of \(8 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and radiation heat transfer with the surrounding at a temperature of \(20^{\circ} \mathrm{C}\). Determine the necessary emissivity of the inside tube so that the outer cover temperature is below \(45^{\circ} \mathrm{C}\) to prevent thermal burns.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.