Chapter 13: Problem 59
13-59 This question deals with steady-state radiation heat transfer between a sphere \(\left(r_{1}=30 \mathrm{~cm}\right)\) and a circular disk \(\left(r_{2}=120 \mathrm{~cm}\right)\), which are separated by a center-to- center distance \(h=60 \mathrm{~cm}\). When the normal to the center of disk passes through the center of the sphere, the radiation view factor is given by $$ F_{12}=0.5\left\\{1-\left[1+\left(\frac{r_{2}}{h}\right)^{2}\right]^{-0.5}\right\\} $$ Surface temperatures of the sphere and the disk are \(600^{\circ} \mathrm{C}\) and \(200^{\circ} \mathrm{C}\), respectively; and their emissivities are \(0.9\) and \(0.5\), respectively. (a) Calculate the view factors \(F_{12}\) and \(F_{21}\). (b) Calculate the net rate of radiation heat exchange between the sphere and the disk. (c) For the given radii and temperatures of the sphere and the disk, the following four possible modifications could increase the net rate of radiation heat exchange: paint each of the two surfaces to alter their emissivities, adjust the distance between them, and provide an (refractory) enclosure. Calculate the net rate of radiation heat exchange between the two bodies if the best values are selected for each of the above modifications.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.