Chapter 13: Problem 132
Two square plates, with the sides \(a\) and \(b\) (and \(b>a\) ), are coaxial and parallel to each other, as shown in Fig. P13-132, and they are separated by a center-to-center distance of \(L\). The radiation view factor from the smaller to the larger plate, \(F_{a b}\), is given by $$ F_{a b}=\frac{1}{2 A}\left\\{\left[(B+A)^{2}+4\right]^{0.5}-\left[(B-A)^{2}+4\right]^{0.5}\right\\} $$ where, \(A=a / L\) and \(B=b / L\). (a) Calculate the view factors \(F_{a b}\) and \(F_{b a}\) for \(a=20 \mathrm{~cm}\), \(b=60 \mathrm{~cm}\), and \(L=40 \mathrm{~cm}\). (b) Calculate the net rate of radiation heat exchange between the two plates described above if \(T_{a}=800^{\circ} \mathrm{C}\), \(T_{b}=200^{\circ} \mathrm{C}, \varepsilon_{a}=0.8\), and \(\varepsilon_{b}=0.4\). (c) A large square plate (with the side \(c=2.0 \mathrm{~m}, \varepsilon_{c}=0.1\), and negligible thickness) is inserted symmetrically between the two plates such that it is parallel to and equidistant from them. For the data given above, calculate the temperature of this third plate when steady operating conditions are established.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.