Chapter 11: Problem 99
Cold water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) leading to a shower enters a thin-walled double-pipe counter-flow heat exchanger at \(15^{\circ} \mathrm{C}\) at a rate of \(0.25 \mathrm{~kg} / \mathrm{s}\) and is heated to \(45^{\circ} \mathrm{C}\) by hot water \(\left(c_{p}=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) that enters at \(100^{\circ} \mathrm{C}\) at a rate of \(3 \mathrm{~kg} / \mathrm{s}\). If the overall heat transfer coefficient is \(950 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the rate of heat transfer and the heat transfer surface area of the heat exchanger using the \(\varepsilon-\mathrm{NTU}\) method.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.