Chapter 11: Problem 96
Hot water \(\left(c_{p h}=4188 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) with mass flow rate of \(2.5 \mathrm{~kg} / \mathrm{s}\) at \(100^{\circ} \mathrm{C}\) enters a thin-walled concentric tube counterflow heat exchanger with a surface area of \(23 \mathrm{~m}^{2}\) and an overall heat transfer coefficient of \(1000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Cold water \(\left(c_{p c}=4178 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) with mass flow rate of \(5 \mathrm{~kg} / \mathrm{s}\) enters the heat exchanger at \(20^{\circ} \mathrm{C}\), determine \((a)\) the heat transfer rate for the heat exchanger and \((b)\) the outlet temperatures of the cold and hot fluids. After a period of operation, the overall heat transfer coefficient is reduced to \(500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine (c) the fouling factor that caused the reduction in the overall heat transfer coefficient.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.