Chapter 11: Problem 69
A shell-and-tube heat exchanger with 2-shell passes and 12 -tube passes is used to heat water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) with ethylene glycol \(\left(c_{p}=2680 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\). Water enters the tubes at \(22^{\circ} \mathrm{C}\) at a rate of \(0.8 \mathrm{~kg} / \mathrm{s}\) and leaves at \(70^{\circ} \mathrm{C}\). Ethylene \(\mathrm{glycol}\) enters the shell at \(110^{\circ} \mathrm{C}\) and leaves at \(60^{\circ} \mathrm{C}\). If the overall heat transfer coefficient based on the tube side is \(280 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the rate of heat transfer and the heat transfer surface area on the tube side.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.