Chapter 11: Problem 61
Hot exhaust gases of a stationary diesel engine are to be used to generate steam in an evaporator. Exhaust gases \(\left(c_{p}=1051 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enter the heat exchanger at \(550^{\circ} \mathrm{C}\) at a rate of \(0.25 \mathrm{~kg} / \mathrm{s}\) while water enters as saturated liquid and evaporates at \(200^{\circ} \mathrm{C}\left(h_{f g}=1941 \mathrm{~kJ} / \mathrm{kg}\right)\). The heat transfer surface area of the heat exchanger based on water side is \(0.5 \mathrm{~m}^{2}\) and overall heat transfer coefficient is \(1780 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the rate of heat transfer, the exit temperature of exhaust gases, and the rate of evaporation of water.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.