Chapter 11: Problem 29
What are the common approximations made in the analysis of heat exchangers?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 11: Problem 29
What are the common approximations made in the analysis of heat exchangers?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeEthanol is vaporized at \(78^{\circ} \mathrm{C}\left(h_{f g}=846 \mathrm{~kJ} / \mathrm{kg}\right)\) in a double-pipe parallel-flow heat exchanger at a rate of \(0.03 \mathrm{~kg} / \mathrm{s}\) by hot oil \(\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) that enters at \(120^{\circ} \mathrm{C}\). If the heat transfer surface area and the overall heat transfer coefficients are \(6.2 \mathrm{~m}^{2}\) and \(320 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), respectively, determine the outlet temperature and the mass flow rate of oil using \((a)\) the LMTD method and \((b)\) the \(\varepsilon-\mathrm{NTU}\) method.
Air at \(18^{\circ} \mathrm{C}\left(c_{p}=1006 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) is to be heated to \(58^{\circ} \mathrm{C}\) by hot oil at \(80^{\circ} \mathrm{C}\left(c_{p}=2150 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is \(750 \mathrm{~W} / \mathrm{K}\) and the mass flow rate of air is twice that of oil. Determine \((a)\) the effectiveness of the heat exchanger, \((b)\) the mass flow rate of air, and \((c)\) the rate of heat transfer.
A company owns a refrigeration system whose refrigeration capacity is 200 tons ( 1 ton of refrigeration = \(211 \mathrm{~kJ} / \mathrm{min}\) ), and you are to design a forced-air cooling system for fruits whose diameters do not exceed \(7 \mathrm{~cm}\) under the following conditions: The fruits are to be cooled from \(28^{\circ} \mathrm{C}\) to an average temperature of \(8^{\circ} \mathrm{C}\). The air temperature is to remain above \(-2^{\circ} \mathrm{C}\) and below \(10^{\circ} \mathrm{C}\) at all times, and the velocity of air approaching the fruits must remain under \(2 \mathrm{~m} / \mathrm{s}\). The cooling section can be as wide as \(3.5 \mathrm{~m}\) and as high as \(2 \mathrm{~m}\). Assuming reasonable values for the average fruit density, specific heat, and porosity (the fraction of air volume in a box), recommend reasonable values for the quantities related to the thermal aspects of the forced-air cooling, including (a) how long the fruits need to remain in the cooling section, \((b)\) the length of the cooling section, \((c)\) the air velocity approaching the cooling section, \((d)\) the product cooling capacity of the system, in \(\mathrm{kg}\) fruit/h, \((e)\) the volume flow rate of air, and \((f)\) the type of heat exchanger for the evaporator and the surface area on the air side.
Oil is being cooled from \(180^{\circ} \mathrm{F}\) to \(120^{\circ} \mathrm{F}\) in a 1 -shell and 2-tube heat exchanger with an overall heat transfer coefficient of \(40 \mathrm{Btu} / \mathrm{h} \mathrm{ft} 2{ }^{\circ} \mathrm{F}\). Water \(\left(c_{p c}=1.0 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\) enters at \(80^{\circ} \mathrm{F}\) and exits at \(100^{\circ} \mathrm{F}\) with a mass flow rate of \(20,000 \mathrm{lbm} / \mathrm{h}\), determine (a) the log mean temperature difference and \((b)\) the surface area of the heat exchanger.
Consider a recuperative cross flow heat exchanger (both fluids unmixed) used in a gas turbine system that carries the exhaust gases at a flow rate of \(7.5 \mathrm{~kg} / \mathrm{s}\) and a temperature of \(500^{\circ} \mathrm{C}\). The air initially at \(30^{\circ} \mathrm{C}\) and flowing at a rate of \(15 \mathrm{~kg} / \mathrm{s}\) is to be heated in the recuperator. The convective heat transfer coefficients on the exhaust gas and air side are \(750 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and \(300 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), respectively. Due to long term use of the gas turbine the recuperative heat exchanger is subject to fouling on both gas and air side that offers a resistance of \(0.0004 \mathrm{~m}^{2} \cdot \mathrm{K} / \mathrm{W}\) each. Take the properties of exhaust gas to be the same as that of air \(\left(c_{p}=1069 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\). If the exit temperature of the exhaust gas is \(320^{\circ} \mathrm{C}\) determine \((a)\) if the air could be heated to a temperature of \(150^{\circ} \mathrm{C}(b)\) the area of heat exchanger \((c)\) if the answer to part (a) is no, then determine what should be the air mass flow rate in order to attain the desired exit temperature of \(150^{\circ} \mathrm{C}\) and \((d)\) plot variation of the exit air temperature over a temperature range of \(75^{\circ} \mathrm{C}\) to \(300^{\circ} \mathrm{C}\) with air mass flow rate assuming all the other conditions remain the same.
What do you think about this solution?
We value your feedback to improve our textbook solutions.