Chapter 11: Problem 147
Water \(\left(c_{p}=1.0 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\) is to be heated by solarheated hot air \(\left(c_{p}=0.24 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\) in a double- pipe counterflow heat exchanger. Air enters the heat exchanger at \(190^{\circ} \mathrm{F}\) at a rate of \(0.7 \mathrm{lbm} / \mathrm{s}\) and leaves at \(135^{\circ} \mathrm{F}\). Water enters at \(70^{\circ} \mathrm{F}\) at a rate of \(0.35 \mathrm{lbm} / \mathrm{s}\). The overall heat transfer coefficient based on the inner side of the tube is given to be \(20 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\). Determine the length of the tube required for a tube internal diameter of \(0.5 \mathrm{in}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.