Chapter 11: Problem 115
A cross-flow heat exchanger consists of 80 thinwalled tubes of \(3-\mathrm{cm}\) diameter located in a duct of \(1 \mathrm{~m} \times 1 \mathrm{~m}\) cross section. There are no fins attached to the tubes. Cold water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enters the tubes at \(18^{\circ} \mathrm{C}\) with an average velocity of \(3 \mathrm{~m} / \mathrm{s}\), while hot air \(\left(c_{p}=1010 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enters the channel at \(130^{\circ} \mathrm{C}\) and \(105 \mathrm{kPa}\) at an average velocity of \(12 \mathrm{~m} / \mathrm{s}\). If the overall heat transfer coefficient is \(130 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the outlet temperatures of both fluids and the rate of heat transfer.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.