Chapter 11: Problem 107
A shell-and-tube heat exchanger with 2-shell passes and 8 -tube passes is used to heat ethyl alcohol \(\left(c_{p}=2670 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) in the tubes from \(25^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) at a rate of \(2.1 \mathrm{~kg} / \mathrm{s}\). The heating is to be done by water \(\left(c_{p}=\right.\) \(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})\) that enters the shell at \(95^{\circ} \mathrm{C}\) and leaves at \(60^{\circ} \mathrm{C}\). If the overall heat transfer coefficient is \(800 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the heat transfer surface area of the heat exchanger using \((a)\) the LMTD method and \((b)\) the \(\varepsilon-\mathrm{NTU}\) method.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.