Chapter 11: Problem 105
Hot oil \(\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) is to be cooled by water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) in a 2 -shell-passes and 12 -tube-passes heat exchanger. The tubes are thin-walled and are made of copper with a diameter of \(1.8 \mathrm{~cm}\). The length of each tube pass in the heat exchanger is \(3 \mathrm{~m}\), and the overall heat transfer coefficient is \(340 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Water flows through the tubes at a total rate of \(0.1 \mathrm{~kg} / \mathrm{s}\), and the oil through the shell at a rate of \(0.2 \mathrm{~kg} / \mathrm{s}\). The water and the oil enter at temperatures \(18^{\circ} \mathrm{C}\) and \(160^{\circ} \mathrm{C}\), respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.