Chapter 1: Problem 44
How does forced convection differ from natural convection?
Chapter 1: Problem 44
How does forced convection differ from natural convection?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a power plant, pipes transporting superheated vapor are very common. Superheated vapor is flowing at a rate of \(0.3 \mathrm{~kg} / \mathrm{s}\) inside a pipe with \(5 \mathrm{~cm}\) in diameter and \(10 \mathrm{~m}\) in length. The pipe is located in a power plant at \(20^{\circ} \mathrm{C}\), and has a uniform pipe surface temperature of \(100^{\circ} \mathrm{C}\). If the temperature drop between the inlet and exit of the pipe is \(30^{\circ} \mathrm{C}\), and the specific heat of the vapor is \(2190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\), determine the heat transfer coefficient as a result of convection between the pipe surface and the surrounding.
The roof of a house consists of a 22-cm-thick (st) concrete slab \((k=2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) that is \(15 \mathrm{~m}\) wide and \(20 \mathrm{~m}\) long. The emissivity of the outer surface of the roof is \(0.9\), and the convection heat transfer coefficient on that surface is estimated to be \(15 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The inner surface of the roof is maintained at \(15^{\circ} \mathrm{C}\). On a clear winter night, the ambient air is reported to be at \(10^{\circ} \mathrm{C}\) while the night sky temperature for radiation heat transfer is \(255 \mathrm{~K}\). Considering both radiation and convection heat transfer, determine the outer surface temperature and the rate of heat transfer through the roof. If the house is heated by a furnace burning natural gas with an efficiency of 85 percent, and the unit cost of natural gas is \(\$ 1.20\) / therm ( 1 therm \(=105,500 \mathrm{~kJ}\) of energy content), determine the money lost through the roof that night during a 14-hour period.
We often turn the fan on in summer to help us cool. Explain how a fan makes us feel cooler in the summer. Also explain why some people use ceiling fans also in winter.
A cylindrical resistor element on a circuit board dissipates \(1.2 \mathrm{~W}\) of power. The resistor is \(2 \mathrm{~cm}\) long, and has a diameter of \(0.4 \mathrm{~cm}\). Assuming heat to be transferred uniformly from all surfaces, determine \((a)\) the amount of heat this resistor dissipates during a 24-hour period, \((b)\) the heat flux, and \((c)\) the fraction of heat dissipated from the top and bottom surfaces.
A 300-ft-long section of a steam pipe whose outer diameter is 4 in passes through an open space at \(50^{\circ} \mathrm{F}\). The average temperature of the outer surface of the pipe is measured to be \(280^{\circ} \mathrm{F}\), and the average heat transfer coefficient on that surface is determined to be \(6 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\). Determine \((a)\) the rate of heat loss from the steam pipe and (b) the annual cost of this energy loss if steam is generated in a natural gas furnace having an efficiency of 86 percent, and the price of natural gas is $$\$ 1.10 /$$ therm ( 1 therm \(=100,000\) Btu).
What do you think about this solution?
We value your feedback to improve our textbook solutions.