Chapter 1: Problem 43
Does any of the energy of the sun reach the earth by conduction or convection?
Chapter 1: Problem 43
Does any of the energy of the sun reach the earth by conduction or convection?
All the tools & learning materials you need for study success - in one app.
Get started for freeA cold bottled drink ( \(\left.m=2.5 \mathrm{~kg}, c_{p}=4200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(5^{\circ} \mathrm{C}\) is left on a table in a room. The average temperature of the drink is observed to rise to \(15^{\circ} \mathrm{C}\) in 30 minutes. The average rate of heat transfer to the drink is (a) \(23 \mathrm{~W}\) (b) \(29 \mathrm{~W}\) (c) \(58 \mathrm{~W}\) (d) \(88 \mathrm{~W}\) (e) \(122 \mathrm{~W}\)
A flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has a surface area of \(2 \mathrm{~m}^{2}\) with emissivity and absorptivity of \(0.9\). The surface temperature of the absorber is \(35^{\circ} \mathrm{C}\), and solar radiation is incident on the absorber at \(500 \mathrm{~W} / \mathrm{m}^{2}\) with a surrounding temperature of \(0^{\circ} \mathrm{C}\). Convection heat transfer coefficient at the absorber surface is \(5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), while the ambient temperature is \(25^{\circ} \mathrm{C}\). Net heat rate absorbed by the solar collector heats the water from an inlet temperature \(\left(T_{\text {in }}\right)\) to an outlet temperature \(\left(T_{\text {out }}\right)\). If the water flow rate is \(5 \mathrm{~g} / \mathrm{s}\) with a specific heat of \(4.2 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\), determine the temperature rise of the water.
We often turn the fan on in summer to help us cool. Explain how a fan makes us feel cooler in the summer. Also explain why some people use ceiling fans also in winter.
A 5-cm-external-diameter, 10-m-long hot-water pipe at \(80^{\circ} \mathrm{C}\) is losing heat to the surrounding air at \(5^{\circ} \mathrm{C}\) by natural convection with a heat transfer coefficient of \(25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the rate of heat loss from the pipe by natural convection. Answer: \(2945 \mathrm{~W}\)
Eggs with a mass of \(0.15 \mathrm{~kg}\) per egg and a specific heat of \(3.32 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\) are cooled from \(32^{\circ} \mathrm{C}\) to \(10^{\circ} \mathrm{C}\) at a rate of 200 eggs per minute. The rate of heat removal from the eggs is (a) \(7.3 \mathrm{~kW}\) (b) \(53 \mathrm{~kW}\) (c) \(17 \mathrm{~kW}\) (d) \(438 \mathrm{~kW}\) (e) \(37 \mathrm{~kW}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.