Chapter 1: Problem 3
What is the caloric theory? When and why was it abandoned?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 1: Problem 3
What is the caloric theory? When and why was it abandoned?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn electric heater with the total surface area of \(0.25 \mathrm{~m}^{2}\) and emissivity \(0.75\) is in a room where the air has a temperature of \(20^{\circ} \mathrm{C}\) and the walls are at \(10^{\circ} \mathrm{C}\). When the heater consumes \(500 \mathrm{~W}\) of electric power, its surface has a steady temperature of \(120^{\circ} \mathrm{C}\). Determine the temperature of the heater surface when it consumes \(700 \mathrm{~W}\). Solve the problem (a) assuming negligible radiation and (b) taking radiation into consideration. Based on your results, comment on the assumption made in part ( \(a\) ).
Define emissivity and absorptivity. What is Kirchhoff's law of radiation?
Consider a flat-plate solar collector placed horizontally on the flat roof of a house. The collector is \(5 \mathrm{ft}\) wide and \(15 \mathrm{ft}\) long, and the average temperature of the exposed surface of the collector is \(100^{\circ} \mathrm{F}\). The emissivity of the exposed surface of the collector is \(0.9\). Determine the rate of heat loss from the collector by convection and radiation during a calm day when the ambient air temperature is \(70^{\circ} \mathrm{F}\) and the effective sky temperature for radiation exchange is \(50^{\circ} \mathrm{F}\). Take the convection heat transfer coefficient on the exposed surface to be \(2.5 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\).
A thin metal plate is insulated on the back and exposed to solar radiation on the front surface. The exposed surface of the plate has an absorptivity of \(0.7\) for solar radiation. If solar radiation is incident on the plate at a rate of \(550 \mathrm{~W} / \mathrm{m}^{2}\) and the surrounding air temperature is \(10^{\circ} \mathrm{C}\), determine the surface temperature of the plate when the heat loss by convection equals the solar energy absorbed by the plate. Take the convection heat transfer coefficient to be \(25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), and disregard any heat loss by radiation.
A soldering iron has a cylindrical tip of \(2.5 \mathrm{~mm}\) in diameter and \(20 \mathrm{~mm}\) in length. With age and usage, the tip has oxidized and has an emissivity of \(0.80\). Assuming that the average convection heat transfer coefficient over the soldering iron tip is \(25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), and the surrounding air temperature is \(20^{\circ} \mathrm{C}\), determine the power required to maintain the tip at \(400^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.