Chapter 1: Problem 105
Solar radiation is incident on a \(5 \mathrm{~m}^{2}\) solar absorber plate surface at a rate of \(800 \mathrm{~W} / \mathrm{m}^{2}\). Ninety-three percent of the solar radiation is absorbed by the absorber plate, while the remaining 7 percent is reflected away. The solar absorber plate has a surface temperature of \(40^{\circ} \mathrm{C}\) with an emissivity of \(0.9\) that experiences radiation exchange with the surrounding temperature of \(-5^{\circ} \mathrm{C}\). In addition, convective heat transfer occurs between the absorber plate surface and the ambient air of \(20^{\circ} \mathrm{C}\) with a convection heat transfer coefficient of \(7 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the efficiency of the solar absorber, which is defined as the ratio of the usable heat collected by the absorber to the incident solar radiation on the absorber.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.