Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A state trooper chases a speeder along a straight road; both vehicles move at 160km/h. The siren on the trooper’s vehicle produces sound at a frequency of 500Hz. What is the Doppler shift in the frequency heard by the speeder?

Short Answer

Expert verified

The Doppler shift in the frequency heard by the speeder is, 0.

Step by step solution

01

The given data

  1. Frequency of the siren is, f = 500Hz
  2. Speed of the trooper is, vs = 160km/h or44.44ms
  3. Speed of the speeder is, vD = 160km/h or44.44ms
02

Understanding the concept of the Doppler Effect

Inserting the given values in the formula obtained from Doppler’s Effect, we can find the frequency heard by the speeder. Using this and the frequency of the siren, we can find the Doppler shift in the frequency heard by the speeder.

Formula:

The frequency received by the observer according to the Doppler Effect, (since the motion of the speeder is away from the source.)

f'=f(v-vD)(v-vs) …(i)

03

Calculation of the Doppler shift in frequency

We know that the speed of sound is,

Using equation (i) andsubstitute all the value in this equation, the frequency received by the speeder is given as:

f'=500Hz×343m/s-44.44m/s343m/s-44.44m/sf'=500Hz

Hence, net shift in the frequency due to the two vehicles of same speed is given as:

f=f'-f=500Hz-500Hz=0

Therefore, Doppler shift in the frequency heard by the speeder is 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Hot chocolate effectTap a metal spoon inside a mug of water and note the frequency fiyou hear. Then add a spoonful of powder (say, chocolate mix or instant coffee) and tap again as you stir the powder. The frequency you hear has a lower value fsbecause the tiny air bubbles released by the powder change the water’s bulk modulus. As the bubbles reach the water surface and disappear, the frequency gradually shifts back to its initial value. During the effect, the bubbles don’t appreciably change the water’s density or volume of dV/dp- that is , the differential change in volume due to the differential change in the pressure caused by the sound wave in the water . Iffs/fi=0.333, what is the ratiodVdps/dVdpi?

A point source emits 30.0 W of sound isotropically . A small microphone intercepts the sound in an area of 0.750cm2, 200 m from the source.

Calculate

(a) the sound intensity there and

(b) the power intercepted by the microphone

The sixth harmonic is set up in a pipe. (a) How many open ends does the pipe have (it has at least one)? (b) Is there a node, antinode, or some intermediate state at the midpoint?

A sound source sends a sinusoidal sound wave of angular frequency 3000rad/s and amplitude 12.0mthrough a tube of air. The internal radius of the tube is2.00cm .

(a) What is the average rate at which energy (the sum of the kinetic and potential energies) is transported to the opposite end of the tube?

(b) If, simultaneously, an identical wave travels along an adjacent, identical tube, what is the total average rate at which energy is transported to the opposite ends of the two tubes by the waves? If, instead, those two waves are sent along the same tube simultaneously, what is the total average rate at which they transport energy when their phase difference is

(c) 0

(d)0.40πrad ,

(e)π rad?

Figure shows two isotropic point sources of sound S1 and S2The sources emit waves in phase at wavelength 0.50m; they are separated byD=1.75m . If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector(a) Exactly in phase and (b) Exactly out of phase ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free