Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Organ pipe A, with both ends open, has a fundamental frequency of300Hz. The third harmonic of organ piperole="math" localid="1661418890848" B, with one end open, has the same frequency as the second harmonic of pipeA. How long are (a) pipeAand (b) pipeB?

Short Answer

Expert verified
  1. The length of pipe A is0.572m .
  2. The length of pipe B is0.429m .

Step by step solution

01

Given data

  • Fundamental frequency ,f0=300Hz ( for pipe A)
  • Second harmonics of A = 3rd harmonics of B
02

Determining the concept

Apply the formula for harmonics for a closed and open organ pipe.

The expression for the frequency is given by,

f0=n2LAv

Here,f0 is frequency, L is length and vis the velocity.

03

(a) Determine the length of pipe A

Fundamental frequency is defined as,

f0=n2LAv

For fundamental frequency, n=1

f0=v2LA

LA=v2f0=(343m/s)2×300Hz=0.572m

Hence,the length of pipe A is 0.572 m.

04

(b) Determine the length of pipe B

Frequency of harmonics for one end open pipe is defined as,

fn=n12v2LB

Forthirdharmonicsmeanssecondoverton,n=2

f3=212v2LB=3×343m/s2×2×LB

f3=257.25LBHz

Now, second harmonic of A = third harmonic of B

2f0=f3

2(300Hz)=257.25LBHz-m

LB=257.25m600=0.429m

Hence,the length of pipe B is 0.429m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Four sound waves are to be sent through the same tube of air, in the same direction:

s1(x,t)=(9.00 nm)cos(2πx700πt)s2(x,t)=(9.00 nm)cos(2πx700πt+0.7π)s3(x,t)=(9.00 nm)cos(2πx700πt+π)s4(x,t)=(9.00 nm)cos(2πx700πt+1.7π).

What is the amplitude of the resultant wave? (Hint:Use a phasor diagram to simplify the problem.)

Question: Two loud speakers are located 3.35 mapart on an outdoor stage. A listener is18.3m from one andfrom the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range 20Hz to 20 KHz. (a) What is the lowest frequency fmin1that gives minimum signal (destructive interference) at the listener’s location? By what number must fmin1be multiplied to get(b)The second lowest frequencyfmin2that gives minimum signal and(c)The third lowest frequencyfmin3that gives minimum signal ?(d)What is the lowest frequencyfmin1that gives maximum signal (constructive interference) at the listener’s location ? By what number mustfmin1be multiplied to get(e) the second lowest frequencyfmin2that gives maximum signal and(f) the third lowest frequencyfmin3that gives maximum signal?

A pipe0.60m long and closed at one end is filled with an unknown gas .The third lowest harmonic frequency for the pipe is 750Hz. (a) What is the speed of sound in the unknown gas? (b) What is the fundamental frequency for this pipe when it is filled with the unknown gas?

(a) If two sound waves, one in air and one in (fresh) water, are equal in intensity and angular frequency, what is the ratio of the pressure amplitude of the wave in water to that of the wave in air? Assume the water and the air are at 20°C. (See Table 14-1.)

(b) If the pressure amplitudes are equal instead, what is the ratio of the intensities of the waves?

In Fig. 17-46, sound of wavelength 0.850 mis emitted isotropically by point source S. Sound ray 1 extends directly to detector D, at distance L=10.0 m. Sound ray 2 extends to Dvia a reflection (effectively, a “bouncing”) of the sound at a flat surface. That reflection occurs on a perpendicular bisector to the SDline,at distance dfrom the line. Assume that the reflection shifts the sound wave by0.500λ. For what least value of d(other than zero) do the direct sound and the reflected sound arrive at D(a) exactly out of phase and (b) exactly in phase?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free