Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If you start with two sinusoidal waves of the same amplitude traveling in phase on a string and then somehow phase-shift one of them by 5.4wavelengths, what type of interference will occur on the string?

Short Answer

Expert verified

The interference will be intermediate closer to fully destructive.

Step by step solution

01

The given data

  1. The two waves have the same amplitude.
  2. ϕ=5.4λ
02

Determining the concept

Use the concept of phase difference and their resulting interference types.

The phase difference is known as the cycle difference between two waves at the same point. Overlapping waves that have the same cycle are known as waves in phase, while waves with phase differences that do not overlap are known as out of phase waves.

Formulae are as follow:

y'x,t=y1x,t+y2x,t

Where, t is time , x-y axis.

03

Determining the type of interference that will occur on the string

The type of interference:

According to the superposition principle, if two sinusoidal waves of the same amplitude travel along the stretched string, they interfere and produce a resultant wave.

But here, the phase difference as 5.4 wavelength. It indicates that the peak of the shifted sine will be 0.4 wavelength ahead of the non-shifted sine.

According to the concept of phase difference and resulting interference types, at 0.5 wavelength, the phase difference is a fully destructive interference.

Hence, the interference for 0.4 wavelength is intermediate closer to fully destructive.

Therefore, the type of interference can be determined by using the concept of phase difference and resulting interference type.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three sinusoidal waves of the same frequency travel along a string in the positive direction of an xaxis. Their amplitudes are y1,y1/2, andy1/3, and their phase constants are 0,π/2, andπ, respectively. What are the (a) amplitude and (b) phase constant of the resultant wave? (c) Plot the wave form of the resultant wave at t=0, and discuss its behavior as tincreases.

A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.170s. (a)What are the period and (b)What is the frequency? (c)What if the wavelength is 1.40m; what is the wave speed?

The type of rubber band used inside some baseballs and golf balls obeys Hooke’s law over a wide range of elongation of the band. A segment of this material has an un-stretched length land a mass m. When a force Fis applied, the band stretches an additional lengthl. (a) What is the speed (in terms of m, l, and the spring constant k) of transverse waves on this stretched rubber band? (b) Using your answer to (a), show that the time required for a transverse pulse to travel the length of the rubber band is proportional to 1/l if role="math" localid="1660986246683" ll and is constant if ll.

At timet = 0and at position x = 0 malong a string, a traveling sinusoidal wave with an angular frequency of 440 rad/shas displacement y=+4.5mmand transverse velocityu=0.75m/s . If the wave has the general formy(x,t)=ymsin(kx-ωt+ϕ) , what is phase constant ϕ?

For a particular transverse standing wave on a long string, one of an antinodes is at x = 0and an adjacent node is at x = 0.10 m. The displacement y(t)of the string particle at x = 0is shown in Fig.16-40, where the scale of y theaxis is set by ys=4.0cm. When t = 0.50 s, What is the displacement of the string particle at (a) x = 0.20 mand x = 0.30 m (b) x = 0.30 m? What is the transverse velocity of the string particle at x = 0.20 mat (c) t = 0.50 sand (d) t = 0.1 s ? (e) Sketch the standing wave atfor the range x = 0to x = 0.40 m.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free