Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A125 cm length of string has mass 2.00 gand tension 7.00 N. (a) What is the wave speed for this string? (b)What is the lowest resonant frequency of this string?

Short Answer

Expert verified
  1. The wave speed for this string is 66.1 m/s
  2. The lowest frequency of this string is 26.4 Hz

Step by step solution

01

Given data

The length of the string isL = 125 cm or 1.25 m.

The mass of the string is M = 2.00 g or 0.002 kg .

The tension in the string is τ=7.00N.

02

Understanding the concept of resonant frequency

By using the formulas for the wave speed and the lowest resonant frequency, we can find the wave speed and the lowest resonant frequency of the string respectively.

Formula:

The speed of the wave v=τμ..........(1)

The linear density of the string,μ=ML.........(2)

The resonant frequency of the wave, f=vλ.........(3)

03

Step 3(a): Calculation of the speed of the wave

Using equation (2) in equation (1), we get the speed of the wave as given:

v=τLM=7.00×1.250.002=66.1m/s

Hence, the speed of the wave is 66.1 m/s

04

Step 4(b): Calculation of the lowest frequency

But, the wavelength of the wave with lowest resonant frequencyf1isλ1=2L, therefore, using this in the equation (3) and the given values, we get the lowest frequency as given:

f1=v2L=66.12×1.25=26.4Hz

Hence, the value of lowest frequency is 26.4 Hz

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The heaviest and lightest strings on a certain violin have linear densities of3.0and0.29 g/m.What is the ratio of the diameter of the heaviest string to that of the lightest string, assuming that the strings are of the same material?

Figure 16-46 shows transverse accelerationayversus time tof the point on a string at x=0, as a wave in the form ofy(x,t)=ymsin(kx-ωt+ϕ)passes through that point. The scale of the vertical axis is set byas=400m/s2. What isϕ? (Caution:A calculator does not always give the proper inverse trig function, so check your answer by substituting it and an assumed value ofωintoy(x,t)and then plotting the function.

Two sinusoidal waves of the same frequency are to be sent in the same direction along a taut string. One wave has amplitude of,5.0 mm the other.8.0 mm (a) What phase differenceϕ1between the two waves results in the smallest amplitude of the resultant wave? (b) What is that smallest amplitude? (c) What phase differenceϕ2results in the largest amplitude of the resultant wave? (d) What is that largest amplitude? (e) What is the resultant amplitude if the phase angle is ((ϕ1-ϕ2)/2)?

A human wave during sporting events within large, densely packed stadiums, spectators will send a wave (or pulse) around the stadium (Figure). As the wave reaches a group of spectators, they stand with a cheer and then sit. At any instant, the width wof the wave is the distance from the leading edge (people are just about to stand) to the trailing edge (people have just sat down). Suppose a human wave travels a distance of 853seats around a stadium in 39 s, with spectators requiring about 1.8 sto respond to the wave’s passage by standing and then sitting. (a)What is the wave speed v(in seats per second) and (b)What is widthw (in number of seats)?

Figure

Two waves are described byy1=0.30sin[π5x-200t]and y3=0.30sin[π(5x-200t)+π/3], where,y1,y2and xare in meters and t is in seconds. When these two waves are combined, a traveling wave is produced. What are the (a) amplitude, (b) wave speed, and (c) wavelength of that travelling wave?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free