Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string with a speed of10cm/s. If the time interval between instants when the string is flat is0.50s, what is the wavelength of the waves?

Short Answer

Expert verified

The wavelength of the waves is 10 m

Step by step solution

01

The given data

i) Velocity of the string, v=10 m/s

ii) Time interval, t =0.50 sec

02

Understanding the concept of wave motion

The string is flat each time the particle passes through the equilibrium position. The particle may travel towards the positive end or negative end and come back to its equilibrium position. So the time taken during this travel would be half of the period of the wave. Using this we can find the period or frequency of the wave and from that, we can find the wavelength.

Formula:

The frequency of a wave,f=1t (i)

The wavelength of wave, λ=vf (ii)

03

Calculation of the wavelength

In the given problem, the total time interval i.e. travelling of particle in positive and negative interval can be given as 2 (0.50s) = 1.0s

Hence, using equation (i) and the total interval, the value of frequency becomes:

f=11.0=1Hz

Again using the value of frequency in equation (ii), we get the wavelength as follows:
λ=10m/s1Hz=10m

Hence, the value of the wavelength is 10m

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 16-25agives a snapshot of a wave traveling in the direction of positive xalong a string under tension. Four string elements are indicated by the lettered points. For each of those elements, determine whether, at the instant of the snapshot, the element is moving upward or downward or is momentarily at rest. (Hint:Imagine the wave as it moves through the four string elements, as if you were watching a video of the wave as it traveled rightward.) Figure 16-25bgives the displacement of a string element located at, say, x=0as a function of time. At the lettered times, is the element moving upward or downward or is it momentarily at rest?

A 1.50 mwire has a mass of 8.70 gand is under a tension of 120 N. The wire is held rigidly at both ends and set into oscillation. (a) What is the speed of waves on the wire? What is the wavelength of the waves that produce (b) one-loop and (c) two loop standing waves? What is the frequency of the waves that produce (d) one-loop and (e) two-loop standing waves?

At timet = 0and at position x = 0 malong a string, a traveling sinusoidal wave with an angular frequency of 440 rad/shas displacement y=+4.5mmand transverse velocityu=0.75m/s . If the wave has the general formy(x,t)=ymsin(kx-ωt+ϕ) , what is phase constant ϕ?

If you set up the seventh harmonic on a string, (a) how many nodes are present, and (b) is there a node, antinode, or some intermediate state at the midpoint? If you next set up the sixth harmonic, (c) is its resonant wavelength longer or shorter than that for the seventh harmonic, and (d) is the resonant frequency higher or lower?

What phase difference between two identical traveling waves, moving in the same direction along a stretched string, results in the combined wave having an amplitude1.50 times that of the common amplitude of the two combining waves? (a)Express your answer in degrees, (b) Express your answer in radians, and (c) Express your answer in wavelengths.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free