Chapter 16: Q36P (page 474)
Four waves are to be sent along the same string, in the same direction:
What is the amplitude of the resultant wave?
Short Answer
There is no resultant wave. Hence the amplitude is zero.
Chapter 16: Q36P (page 474)
Four waves are to be sent along the same string, in the same direction:
What is the amplitude of the resultant wave?
There is no resultant wave. Hence the amplitude is zero.
All the tools & learning materials you need for study success - in one app.
Get started for freeFigure 16-28 shows phasor diagrams for three situations in which two waves travel along the same string. All six waves have the same amplitude. Rank the situations according to the amplitude of the net wave on the string, greatest first.
Oscillation of a 600 Hztuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 400 m/s. The standing wave has four loops and an amplitude of 2.0 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time.
If you set up the seventh harmonic on a string, (a) how many nodes are present, and (b) is there a node, antinode, or some intermediate state at the midpoint? If you next set up the sixth harmonic, (c) is its resonant wavelength longer or shorter than that for the seventh harmonic, and (d) is the resonant frequency higher or lower?
A human wave during sporting events within large, densely packed stadiums, spectators will send a wave (or pulse) around the stadium (Figure). As the wave reaches a group of spectators, they stand with a cheer and then sit. At any instant, the width wof the wave is the distance from the leading edge (people are just about to stand) to the trailing edge (people have just sat down). Suppose a human wave travels a distance of 853seats around a stadium in 39 s, with spectators requiring about 1.8 sto respond to the wave’s passage by standing and then sitting. (a)What is the wave speed v(in seats per second) and (b)What is widthw (in number of seats)?
Figure
A 1.50 mwire has a mass of 8.70 gand is under a tension of 120 N. The wire is held rigidly at both ends and set into oscillation. (a) What is the speed of waves on the wire? What is the wavelength of the waves that produce (b) one-loop and (c) two loop standing waves? What is the frequency of the waves that produce (d) one-loop and (e) two-loop standing waves?
What do you think about this solution?
We value your feedback to improve our textbook solutions.