Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The speed of a transverse wave on a string is170m/swhen the string tension is 120N. To what value must the tension be changed to raise the wave speed to180m/s?

Short Answer

Expert verified

The value of change in tension to raise the velocity to 180 m/s in wave speed is 135 N

Step by step solution

01

The given data

  • Speed of the wave,v1=170m/s
  • Tension in the string, T1=120N
  • Speed of the wave,v2=180m/s
02

Understanding the concept of the wave equation

The wave speed in a string will be equal to the square root of tension in the string having unit linear density.

Formula:

The velocity of a wave in terms of tension and linear density,v=Tμ (i)

03

Calculations the change in tension

First, we find the linear density of the string from the tension 120 N when the wave speed is 170 m/s.

Again, as the value of linear density is same for the given string. Hence, considering equation (i), we can compare the two velocities, hence

To find the tension in the string when wave speed is 180 m/s we can use the formula

T2=v22×μ=v22v12T1μ=T1v12=180170×120=134.5N135N

Hence, the value of tension should be changed to 135 N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 120 mlength of string is stretched between fixed supports. What are the (a) longest, (b) second longest, and (c) third longest wavelength for waves traveling on the string if standing waves are to be set up? (d)Sketch those standing waves.

A sinusoidal wave of angular frequency1200 rad/s and amplitude 3,00mmis sent along a cord with linear density 2.00 g/mand tension 1200 N. (a)What is the average rate at which energy is transported by the wave to the opposite end of the cord? (b)If, simultaneously, an identical wave travels along an adjacent, identical cord, what is the total average rate at which energy is transported to the opposite ends of the two cords by the waves?If, instead, those two waves are sent along the samecord simultaneously, what is the total average rate at which they transport energy When their phase difference is 0, (b)When their phase difference is (c) 0(d)0.4πrad, and (e) isπrad?

In Figure 16-36 (a), string 1 has a linear density of 3.00 g/m, and string 2 has a linear density of 5.00 g/m. They are under tension due to the hanging block of mass M = 500 g. (a)Calculate the wave speed on string 1 and (b) Calculate the wave speed on string 2. (Hint:When a string loops halfway around a pulley, it pulls on the pulley with a net force that is twice the tension in the string.) Next the block is divided into two blocks (with M1+M2=M) and the apparatus is rearranged as shown in Figure (b). (c) Find M1and (d) Find M2such that the wave speeds in the two strings are equal.

A sinusoidal wave travels along a string under tension. Figure 16-31 gives the slopes along the string at time t=0.The scale of the x axis is set by xs=0.80m .What is the amplitude of the wave?

A sinusoidal transverse wave of wavelength 20cmtravels along a string in the positive direction of anaxis. The displacement y of the string particle at x=0is given in Figure 16-34 as a function of time t. The scale of the vertical axis is set byys=4.0cmThe wave equation is to be in the formy(x,t)=ymsin(kx±ωt+ϕ). (a) At t=0, is a plot of y versus x in the shape of a positive sine function or a negative sine function? (b) What isym, (c) What isk,(d) What isω, (e) What isφ (f) What is the sign in front ofω, and (g) What is the speed of the wave? (h) What is the transverse velocity of the particle at x=0when t=5.0 s?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free