Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sample of gas expands from an initial pressure and volume of10Pa  and  1.0 m3to a final volume of2.0 m3. During the expansion, the pressure and volume are related by the equation,p=aV2 where. a=10N/m8Determine the work done by the gas during this expansion.

Short Answer

Expert verified

Work done by the gas during expansion is 23.33 J.

Step by step solution

01

Stating the given data

  1. Initial pressure isP=10 Pa
  2. Initial volume isVi=1.0 m3
  3. Final volume isVf=2.0 m3
  4. Equation of the pressure-volume relation,P=aV2
  5. Value of a is a=10 N/m8.
02

Understanding the concept of work done

By expanding or contracting against a steady external pressure, gases can perform work. We use the concept of work done by gas. Using the equation of work done we can integrate it from initial volume to final volume.

Formula:

The work done by the system in thermodynamic cycle W=PdV,. …(i)

03

Calculation of the work done by the gas

We can write the equation of work done by the gas during expansion using equation (i) and the given equation as

W=ViVfaV2dV=a|V33|ViVf=a3(Vf3Vi3)

Plugging the values in the above equation, we get the work done by the gas as

W=10 N/m83(2.031.03)m9=23.33 J

Hence, the value of the work done by the gas is23.33 J

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three different materials of identical mass are placed one at a time in a special freezer that can extract energy from a material at a certain constant rate. During the cooling process, each material begins in the liquid state and ends in the solid state; Fig. 18-28 shows the temperature Tversus time t. (a) For material 1, is the specific heat for the liquid state greater than or less than that for the solid state? Rank the materials according to (b) freezing point temperature, (c) specific heat in the liquid state, (d) specific heat in the solid state, and (e) heat of fusion, all greatest first.

Question: Suppose the temperature of a gas iswhen it is at the boiling point of water. What then is the limiting value of the ratio of the pressure of the gas at that boiling point to its pressure at the triple point of water? (Assume the volume of the gas is the same at both temperatures).

An energetic athlete can use up all the energy from a diet of 4000Cal/day.. If he were to use up this energy at a steady rate, what is the ratio of the rate of energy use compared to that of a100Wbulb? (The power of100Wis the rate at which the bulb converts electrical energy to heat and the energy of visible light.)

A gas within a closed chamber undergoes the cycle shown in the p-V diagram of Figure. The horizontal scale is set byVs=4.0m3. Calculate the net energy added to the system as heat during one complete cycle.

(a) What is the rate of energy loss in watts per square meter through a glass window3.0mmthick if the outside temperature is20°Fand the inside temperature is+72°F?(b) A storm window having the same thickness of glass is installed parallel to the first window, with an air gap of7.5cmbetween the two windows. What now is the rate of energy loss if conduction is the only important energy-loss mechanism?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free