Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the liquid in a barometer whose coefficient of volume expansion is6.6×104/0C.Find the relative change in the liquid’s height if the temperature changes by120Cwhile the pressure remains constant. Neglect the expansion of the glass tube.

Short Answer

Expert verified

The relative change in height of a liquid is7.92×103.

Step by step solution

01

Stating thegiven data

  1. The coefficient of volume expansion of liquid is.β=6.6×104/°C
  2. The temperature rise isΔT=12°C.
02

Understanding the concept of thermal expansion

Thermal radiation is the process of transferring heat through electromagnetic radiation that is produced by the thermal motion of matter particles. We use the concept of volume thermal expansion. As the expansion of the glass tube is neglected, the relative change in height will be equal to the relative change in volume.

Formulae:

Volume expansion of the body due to thermal radiation,ΔV=V×β×ΔT …(i)

Volume of the body in terms of area and length, V=A×L.…(ii)

03

Calculation of height change

Now, as the expansion of the glass tube is to be neglected, the area of cross-section gets cancelled.

So, the relative change in height,ΔHof a liquid becomes

ΔLL=ΔVV …(iii)

Using equation (i), the relative change in volume can be given as

ΔVV=βΔT …(iv)

So, the relative change in height using equations (iii) and (iv) can be given as

ΔH=ΔLL=βΔT=6.6×104/°C×12°C(usinggivenvalues)=7.92×103

Hence, the relative change in the value of height is.7.92×103

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two constant-volume gas thermometers are assembled, one with nitrogen and the other with hydrogen. Both contain enough gas so that.(a) What is the difference between the pressures in the two thermometers if both bulbs are in boiling water? (Hint: See Fig. 18-6) (b) Which gas is at higher pressure?

As a result of a temperature rise of 320C, a bar with a crack at its center buckles upward (Figure). If the fixed distance L0  is  3.77m and the coefficient of linear expansion of the bar is 25×106/0C, find the rise x of the center.

A person makes a quantity of iced tea by mixing 500 g of hot tea (essentially water) with an equal mass of ice at its melting point. Assume the mixture has negligible energy exchanges with its environment. If the tea’s initial temperature is Ti=90oC , when thermal equilibrium is reached (a) what is the mixture’s temperatureTfand (b) what is the remaining mass mf of ice? IfTf=70oC, (c) when thermal equilibrium is reached what is Tf and (d) when thermal equilibrium is reached what is mf?

In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to P/ρ, where Pis the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and is the density of the chocolate. Rather than increasing the temperature of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of150kJ/kg . Assume that all of the work goes into that melting and that these fats make up 30%of the chocolates mass. What percentage of the fats melt during the extrusion if p=5.5MPaandr=1200kg/m3?

Figure represents a closed cycle for a gas (the figure is not drawn to scale). The change in the internal energy of the gas as it moves from a to c along the path abc is200 J. As it moves from c to d, 180Jmust be transferred to it as heat. An additional transfer of80Jto it as heat is needed as it moves from d to a. How much work is done on the gas as it moves from c to d?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free