Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 10 - 26shows a uniform metal plate that had been square before 25 %of it was snipped off. Three lettered points are indicated. Rank them according to the rotational inertia of the plate around a perpendicular axis through them, greatest first.

Short Answer

Expert verified

The rank of the points having a maximum moment of inertia isc>a>b

Step by step solution

01

Step 1: Given data

The figure of 25 % snipped off square-shaped uniform metal plate.

02

Understanding the concept

We can rank the points according to the moment of inertia using the relation between the moment of inertia and the radius of gyration of the elements.

Formulae are as follows:

I=mh2

Where, h =Radius of gyration, mis mass, I is the moment of inertia.

03

Determining the rank of the points having a maximum moment of inertia

Here,

I=mh2

So, the final moment of inertia will be maximum for the axis which consists of elements having more h (which are more distant from the axis).

From this, it can be concluded that the moment of inertia about an axis through point c is maximum followed by (a) and then (b).

Rank is,c>a>b

Therefore, the points can be ranked according to the moment of inertia about the axis passing through it using its relationship with the radius of gyration.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0s, it rotates 25rad. During that time, what are the magnitudes of

(a) the angular acceleration and

(b) the average angular velocity?

(c) What is the instantaneous angular velocity of the disk at the end of the 5.0s?

(d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0s?

If an airplane propeller rotates at 2000 rev/minwhile the airplane flies at a speed of480km/h relative to the ground, what is the linear speed of a point on the tip of the propeller, at radius 1.5 m, as seen by (a) the pilot and (b) an observer on the ground? The plane’s velocity is parallel to the propeller’s axis of rotation.

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 10revs;60revolutions later, its angular speed is 15revs.

Calculate

(a) the angular acceleration,

(b) the time required to complete the 60 revolutions,

(c) the time required to reach the 10revsangular speed, and

(d) the number of revolutions from rest until the time the disk reaches the 10revs angular speed

The rigid body shown in Fig.10-57consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point P. IfM=0.40kg , a=30cm , and b=50cm, how much work is required to take the body from rest to an angular speed of 5.0 rad/s?

Figure 10-34ashows a disk that can rotate about an axis at a radial distance hfrom the center of the disk. Figure 10-34b gives the rotational inertia lof the disk about the axis as a function of that distance h, from the center out to the edge of the disk. The scale on the laxis is set by lA=0.050kg.m2andlB=0.050kg.m2. What is the mass of the disk?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free