Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Beverage engineering. The pull tab was a major advance in the engineering design of beverage containers. The tab pivots on a central bolt in the can’s top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can’s top that has been scored. If you pull upward with a10 N force, approximately what is the magnitude of the force applied to the scored section? (You will need to examine a can with a pull tab.)

Short Answer

Expert verified

The magnitude of forcethat acts on the scored sectionis25N .

Step by step solution

01

Step 1: Given

i) Distances,r1=1.8cm,  r2=0.73cm

ii) Force,F1=10 N

02

Determining the concept

As the tab is in equilibrium, the net torque exerted by both forces must be equal. Therefore, by using the formula of torque, find the magnitude of force that acts on the scored section.

The formula is as follows:

τup=τdown

Where, τ is torque

03

Determining themagnitude of force that acts on the scored section

For torque in equilibrium,

τup=τdown

F1r1=F2r2

10 N×1.8 m=F2×0.73 m

F2=(1.8 cm0.73 cm)×(10 N)

F2=25 N

Hence, themagnitude of force that acts on the scored section is25N .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The wheel in Fig. 10-30 Has eight equally spaced spokes and a radius of 30cm. It is mounted on a fixed axle and is spinning at 2.5rev/s. You want to shoot a 20cm long arrow parallel to this axle and through the wheel without hitting any of the spokes. Assume that the arrow and the spokes are very thin.

(a) What minimum speed must the arrow have?

(b) Does it matter where between the axle and rim of the wheel you aim? If so, what is the best location?

Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0s, it rotates 25rad. During that time, what are the magnitudes of

(a) the angular acceleration and

(b) the average angular velocity?

(c) What is the instantaneous angular velocity of the disk at the end of the 5.0s?

(d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0s?

A golf ball is launched at an angle of 20°to the horizontal, with a speed of 60m/sand a rotation rate of 90rads. Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.

A uniform helicopter rotor blade is 7.80mlong, has a mass of110kg , and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at320rev/min? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in6.70s . Ignore air resistance. (The blade cannot be considered to be a point mass for this calculation. Why not? Assume the mass distribution of a uniform thin rod.) (c) How much work does the torque do on the blade in order for the blade to reach a speed of 320rev/min?

A seed is on a turntable rotating at13revmin,6.0cmfrom the rotation axis. What are (a) the seed’s acceleration and (b) the least coefficient of static friction to avoid slippage? (c) If the turntable had undergone constant angular acceleration from rest in0.25s, what is the least coefficient to avoid slippage?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free