Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 10-25bshows an overhead view of a horizontal bar that is rotated about the pivot point by two horizontal forcesF1, and F2withF3at angleϕto the bar. Rank the following values of ϕaccording to the magnitude of the angular acceleration of the bar, greatest first:90°,70°,and110°.

Short Answer

Expert verified

The rank of the angles according to the magnitude of angular acceleration is 90°>70°=110°

Step by step solution

01

Step 1: Given data

Angles70°,90°and110°

02

Understanding the concept

Torque is equal to the moment of force. It can also be written as the product of moment of inertia and angular acceleration.

Find the torque related to each angle. Then, using the relation between torque and angular acceleration rank the angles according to the magnitude of angular acceleration.

Formulae are as follows:

τ=la=r×F=rFsinϕ

Where, r is radius, F is force and τ is torque.

03

Determining the rank of the angle according to the magnitude of angular acceleration.

Here, simultaneously calculate torque for each case.

τ=rFsinϕ,, as torque only depends on angle. So the greater the angle greater will be torque.

1.sinϕ=sin90=12.sinϕ=sin70=0.93963.sinϕ=sin110=0.9396

Therefore,τ1>τ2=τ3

Since,τ=Iα ,

α1>α2=α3

The rank of the angle according to the magnitude of angular acceleration is,90°>70°=110°

Therefore, using the given diagram of forces and values of angles and proportionality between torque and angular acceleration the forces can be ranked.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Between1911and1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of1.2mm/y. The tower is55m tall. In radians per second, what is the average angular speed of the tower’s top about its base?

In Fig.1045a , an irregularly shaped plastic plate with uniform thickness and density (mass per unit volume) is to be rotated around an axle that is perpendicular to the plate face and through point O. The rotational inertia of the plate about that axle is measured with the following method. A circular disk of mass0.500 kg and radius2.00 cm is glued to the plate, with its center aligned with point O(Fig.1045b ). A string is wrapped around the edge of the disk the way a string is wrapped around a top. Then the string is pulled for 5.00 s. As a result, the disk and plate are rotated by a constant force of 0.400 Nthat is applied by the string tangentially to the edge of the disk. The resulting angular speed is 114 rad/s. What is the rotational inertia of the plate about the axle?

A pulley wheel that is8.0 cmin diameter has a5.6mlong cord wrapped around its periphery. Starting from rest, the wheel is given a constant angular acceleration of1.5rad/s2. (a) Through what angle must the wheel turn for the cord to unwind completely? (b) How long will this take?

The body in Fig. 10-40 is pivoted at O. Three forces act on FA = 10N it: at point A,8.0m from O; FB = 16N at B,4.0m from O ; FC = 19Nandat C,3.0m from O. What is the net torque about O ?

A yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a30kgbox as shown in Fig10-59. . The outer radius R of the device is , and the radius r of the hub is0.20m . When a constant horizontal force of magnitude 140 N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude0.80 m/s2.What is the rotational inertia of the device about its axis of rotation?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free