Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A golf ball is launched at an angle of 20°to the horizontal, with a speed of 60m/sand a rotation rate of 90rads. Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.

Short Answer

Expert verified

The number of revolutions the ball makes when at maximum height is30

Step by step solution

01

Given

  1. Angle of launch is20°
  2. Horizontal speed is60m/s
  3. Rotational rate is90radsec
02

Understanding the concept

Find time to reach the maximum height using the kinematic equation. Using this time, find the angle in radians. The angle is nothing but angular displacement, which can be converted into a number of rotations using the relationship between one rotation and angle traced during one rotation.

Formula:

vfy=v0y+at

θ-θ0=ω0t

03

Calculate the number of revolutions the ball makes by the time it reaches maximum height

Time to reach maximum height is as follows:

vfy=v0y+at

At maximum height, the velocity is zero, so

0=60sin20-9.8tt=2.094sec

Now, the number of revolutions:

θ-θ0=ω0tθ-θ0=90×2.094θ-θ0=188rad

So

188×1rev2π=29.93rev

So, the number of revolutions is 30.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The angular acceleration of a wheel is α=6.0t4-4.0t2, with αis in radians per second-squared and tin seconds. At time t=0, the wheel has an angular velocity of +2.0radsand an angular position of +1.0rad.

Write expressions for (a) the angular velocity (rad/s) and (b) the angular position (rad) as functions of time (s).

Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0s, it rotates 25rad. During that time, what are the magnitudes of

(a) the angular acceleration and

(b) the average angular velocity?

(c) What is the instantaneous angular velocity of the disk at the end of the 5.0s?

(d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0s?

A pulley wheel that is8.0 cmin diameter has a5.6mlong cord wrapped around its periphery. Starting from rest, the wheel is given a constant angular acceleration of1.5rad/s2. (a) Through what angle must the wheel turn for the cord to unwind completely? (b) How long will this take?

In Fig.1042 , a cylinder having a mass of2.0 kg can rotate about its central axis through pointO . Forces are applied as shown: F1=6.0 N,F2=4.0 N ,F3=2.0 N , andF4=5.0 N . Also,r=5.0 cm andR=12 cm . Find the (a) magnitude and (b) direction of the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.)

In a judo foot-sweep move, you sweep your opponent’s left foot out from under him while pulling on his gi (uniform) toward that side. As a result, your opponent rotates around his right foot and onto the mat. Figure 1044shows a simplified diagram of your opponent as you face him, with his left foot swept out. The rotational axis is through point O. The gravitational force Fg on him effectively acts at his center of mass, which is a horizontal distanced=28 cm from point O. His mass is 70Kg, and his rotational inertia about point O is 65 kg.m2.What is the magnitude of his initial angular acceleration about point O if your pull Fa on his gi is (a) negligible and (b) horizontal with a magnitude of 300Nand applied at height h=1.4 m ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free