Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A small ball of mass 0.75kg is attached to one end of a 1.25m long massless rod, and the other end of the rod is hung from a pivot. When the resulting pendulum is 30ofrom the vertical, what is the magnitude of the gravitational torque calculated about the pivot?

Short Answer

Expert verified

The gravitational torque about the pivot is, 4.6N.m .

Step by step solution

01

Understanding the given information

  1. The magnitude of position vector is, l=1.25m.
  2. The mass of ball is, m=0.75kg.
  3. The angle between pendulum and normal is, θ=30o.
02

Concept and formula used in the given question

Torqueis a turning action on a body about a rotation axis due to a force. If force is applied at a point, then total torque is the cross product of radial vector and force exerted on the body. The magnitude of torque isτ=rFsinθ

τ=l×F=mglsinθ

03

Calculation for themagnitude of the gravitational torque calculated about the pivot

Two forces are acting onthe ball, first is gravitational force and another is the force due to the rod. The force ofthe rod doesn’t interfere in torque, so only the gravitational component of force is included in the torque; the component of the force of gravity that is perpendicular to the rod is mgsinθ.

τ=l×Fτ=mglsinθ

Substitute all the value in the above equation.

τ=0.75kg×9.80m/s2×1.25m×sin30=4.6N.m

Hence the torque is, 4.6N.m .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Beverage engineering. The pull tab was a major advance in the engineering design of beverage containers. The tab pivots on a central bolt in the can’s top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can’s top that has been scored. If you pull upward with a10 N force, approximately what is the magnitude of the force applied to the scored section? (You will need to examine a can with a pull tab.)

Calculate the rotational inertia of a meter stick, with mass 0.56kg, about an axis perpendicular to the stick and located at the 20cmmark. (Treat the stick as a thin rod.)

A thin rod of length 0.75 m and mass0.42kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed4.0 rad/s . Neglecting friction and air resistance, find (a) the rod’s kinetic energy at its lowest position and (b) how far above that position the center of mass rises.

A pulley wheel that is8.0 cmin diameter has a5.6mlong cord wrapped around its periphery. Starting from rest, the wheel is given a constant angular acceleration of1.5rad/s2. (a) Through what angle must the wheel turn for the cord to unwind completely? (b) How long will this take?

When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the floor is76cmand for rotation less than1rev, what are the (a) smallest and (b) largest angular speeds that cause the toast to hit and then topple to be butter-side down?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free