Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A top spins at 30rev/sabout an axis that makes an angle of 30°with the vertical. The mass of the top is 50kg, its rotational inertia about its central axis is 5.0×10-4kg.m2, and its centre of mass is 4.0cmfrom the pivot point. If the spin is clockwise from an overhead view,

(a) what are the precession rate?

(b) what are the direction of the precession as viewed from overhead?

Short Answer

Expert verified
  1. Precession rate is 2.08rad/s2.
  2. Direction of precession is clockwise.

Step by step solution

01

Step 1: Given

f=30rev/secm=0.5kgI=5×104kg.m2r=0.04m

02

Determining the concept

Use formula for precession rate in terms of mass, gravitational acceleration, spin angular frequency, and moment of inertia to find out the precession rate.

Formula are as follow:

ф=m×g×rω=2×π×f

where,f is frequency,mis mass, gis acceleration due to gravity,r is radius,I is moment of inertia,ω is angular frequency andф is precession rate.

03

 Determining the precession rate

(a)

ω=2×π×fω=2π×30ω=188.49rad/sec

Now,

ф=m×g×rф=0.5×9.81×0.045×104×188.49ф=2.08rad/sec

Hence, precession rate is 2.08rad/s2.

04

Determining the direction of precession

(b)

The direction of precession rate is clockwise which can be seen from above.

Using the concept of precession, the rate of precession and the direction in which the precession occurs can be found.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: A uniform solid sphere rolls down an incline. (a) What must be the incline angle if the linear acceleration of the centre of the sphere is to have a magnitude of 0.10 g? (b) If a frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to0.10 g? Why?

In Figure, a small, solid, uniform ball is to be shot from point P so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance d from the right edge of the plateau. The vertical heights areh1=5.00 cmand h2=1.60 cm. With what speed must the ball be shot at point P for it to land atd=6.00 cm?

A uniform solid sphere rolls down in an incline (a) what must be the incline angle if the linear acceleration of the center of the sphere is tohave a magnitude of the 0.10g? (b) If the frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to 0.10g? why?

In a playground, there is a small merry-go-round of radius 1.20 mand mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kgruns at a speed of 3.00 m/salong a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.

In Figure, a 30kg child stands on the edge of a stationary merry-go-round of radius2.0mthe rotational inertia of the merry-go-round about its rotation axis is150kg.m2.the child catches a ball of mass1.0kg.thrown by a friend. Just before the ball is caught, it has a horizontal velocityvof magnitude12m/s, at angleφ=37°with a line tangent to the outer edge of the merry-go-round, as shown. What is the angular speed of the merry-go-round just after the ball is caught?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free