Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Figure, a 30kg child stands on the edge of a stationary merry-go-round of radius2.0mthe rotational inertia of the merry-go-round about its rotation axis is150kg.m2.the child catches a ball of mass1.0kg.thrown by a friend. Just before the ball is caught, it has a horizontal velocityvof magnitude12m/s, at angleφ=37°with a line tangent to the outer edge of the merry-go-round, as shown. What is the angular speed of the merry-go-round just after the ball is caught?

Short Answer

Expert verified

The angular speed of merry-go-round is ω=0.07rad/s.

Step by step solution

01

Step 1: Given

Im=150kg.m2r=2mϕ=370

02

Determining the concept

Firstly, find the unknown speed using the law of conservation of angular momentum. According tothe conservation of momentum, momentum of a system is constant if no external forces are acting on the system.

Formula are as follow:

L=mvr.sinθ

where,m is mass, v is velocity, L is angular momentum and r is radius.

03

Determining the angular speed of merry-go-round

According to law of conservation of angular momentum:

Initialangularmomentum=Finalangularmomentum

Li=LfLi=mvrsin(90ϕ)

sin(90ϕ)=cosϕ

Li=mvrcosϕ

Li=1×12×2×cos(370)=19.17kg.m2/sLf=Lf=(150+30×22+1×22)ωLi=274×ω

Hence,

19.17=274×ωω=0.07rad/s

Hence,the angular speed of merry-go-round is ω=0.07rad/s.

Therefore, using the law conservation of angular momentum, the unknown angular speed can be calculated.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A uniform disk of mass 10m and radius 3.0rcan rotate freely about its fixed centre like a merry-go-round. A smaller uniform disk of mass mand radius rlies on top of the larger disk, concentric with it. Initially the two disks rotate together with an angular velocity of 20rad/s.Then a slight disturbance causes the smaller disk to slide outward across the larger disk, until the outer edge of the smaller disk catches on the outer edge of the larger disk. Afterward, the two disks again rotate together (without further sliding).

(a) What then is their angular velocity about the centre of the larger disk?

(b) What is the ratio ofK/K0 the new kinetic energy of the two-disk system to the system’s initial kinetic energy?

A particle is acted on by two torques about the origin: τ1has a magnitude of2.0Nmand is directed in the positive direction of thexaxis, andτ2has a magnitude of4.0 Nmand is directed in the negative direction of the yaxis. In unit-vector notation, finddl/dt, wherel is the angular momentum of the particle about the origin.

Two particles, each of mass 2.90×10-4kgand speed 5.46 m/s, travel in opposite directions along parallel lines separated by 4.20 cm. (a) What is the magnitude Lof the angular momentum of the two-particle system around a point midway between the two lines? (b) Is the value different for a different location of the point? If the direction of either particle is reversed, what are the answers for (c) part (a) and (d) part (b)?

A man stands on a platform that is rotating (without friction) with an angular speed of 1.2rev/s;his arms are outstretched and he holds a brick in each hand. The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is localid="1660979279335" 6.0kg.m2.If by moving the bricks the man decreases the rotational inertia of the system to 2.0 kg.m2.

(a) What are the resulting angular speed of the platform?

(b) What is the ratio of the new kinetic energy of the system to the original kinetic energy?

(c) What source provided the added kinetic energy?

Question: A particle is to move in an xyplane, clockwise around the origin as seen from the positive side of the zaxis. In unit-vector notation, what torque acts on the particle (aIf the magnitude of its angular momentum about the origin is4.0kgm2/s?? (b) If the magnitude of its angular momentum about the origin is4.0t2kgm2/s?(b) If the magnitude of its angular momentum about the origin is 4.0tkgm2/s?(d)If the magnitude of its angular momentum about the origin is 4.0/t2kgm2/s?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free