Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The uniform rod (length0.60m,mass1.0kg)in Fig. 11-54 rotates in the

plane of the figure about an axis through one end, with a rotational inertia of0.12kg.m2

. As the rod swings through its lowest position, it collides with a0.20kg

putty wad that sticks to the end of the rod. If the rod’s angular speed just before

collision is, 2.4rad/swhat is the angular speed of the rod–putty system immediately after collision?

Short Answer

Expert verified

Angular speed after collision isω=1.5rads.

Step by step solution

01

Step 1: Given

m=1.0kgI1=0.12kg.m2r=0.60m

02

Determining the concept

First, find the total rotational inertia. Using the law of conservation of angular momentum, find the final angular velocity.According tothe conservation of momentum, momentum of a system is constant if no external forces are acting on the system.

Formula are as follow:

I2=I1+mr2

Initialangularmomentum=Finalangularmomentum

Where,Iis moment of inertia,m is mass and ris radius.

03

Determining the angular speed after collision

According to law of conservation of angular momentum:

Initialangularmomentum=Finalangularmomentum

L1=L2I1ω1=I2ω2

I2=I1+m×r2I2=0.12+0.2×0.62=0.3192kg.m20.12×2.4=0.192×ω2

By solving above equation for ω2,

ω2=1.5rad/s

Hence,angular speed after collision isω=1.5rads.

Therefore, angular speed after collision can be calculated by using conservation of momentum principle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Non-uniform cylindrical object.InFigure, a cylindrical object of massMand radius Rrolls smoothly from rest down a ramp and onto a horizontal section. From there it rolls off the ramp and onto the floor, landing a horizontal distance d = 0.506m from the end of the ramp. The initial height of the object is H = 0.90m ; the end of the ramp is at height h = 0.10m . The object consists of an outer cylindrical shell (of a certain uniform density) that is glued to a central cylinder (of a different uniform density). The rotational inertia of the object can be expressed in the general form l=βMR2but b is not 0.5as it is for a cylinder of uniform density. Determine β.

The rotational inertia of a collapsing spinning star drops to 13 its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?

Question: Figure shows the potential energy U (x) of a solid ball that can roll along an xaxis. The scale on the Uaxis is set by Us =100j. The ball is uniform, rolls smoothly, and has a mass of 0.400 kgIt is released at x = 7.0 mheaded in the negative direction of the xaxis with a mechanical energy of 75 J (a) If the ball can reach x = 0 m, what is its speed there, and if it cannot, what is its turning point? Suppose, instead, it is headed in the positive direction of the xaxis when it is released at x = 7.0 m with 75J(b) If the ball can reach x = 13m, what is its speed there, and if it cannot, what is its turning point?

Two 2.00kgballs are attached to the ends of a thin rod of length role="math" localid="1661007264498" 50.0cmand negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (In Figure), 50.0gwad of wet putty drops onto one of the balls, hitting it with a speed of3.00m/s and then sticking to it.

(a) What is the angular speed of the system just after the putty wad hits?

(b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before?

(c) Through what angle will the system rotate before it momentarily stops?

A wheel of radius 0.250 m, which is moving initially at 43.0 m/s, rolls to a stop in 225 m. Calculate the magnitudes of its (a) linear acceleration and (b) angular acceleration. (c) Its rotational inertia is 0.155 kg.m2 about its central axis. Find the magnitude of the torque about the central axis due to friction on the wheel.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free