Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A uniform thin rod of length0.500m and mass4.00kg can rotate in a horizontal plane about a vertical axis through its centre. The rod is at rest when a3.00gbullet travelling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet’s path makes angleθ=60.0°with the rod (Figure). If the bullet lodges in the rod and the angular velocity of the rod is10rad/simmediately after the collision, what is the bullet’s speed just before impact?

Short Answer

Expert verified

Bullet’s speed just before impact isv=1300m/s .

Step by step solution

01

Step 1: Given

r=0.25m

ml=4.00kg

mb=0.003kg

θ=600

02

Determining the concept

Find the angular momentum of the bullet before the collision about the given point. Using the law of conservation of angular momentum, find the angular momentum, and finally, using the relationship between linear and angular velocity, find the speed.According tothe conservation of momentum, momentum of a system is constant if no external forces are acting on the system.

Formula is as follow:

Initial angular momentum = Final angular momentum

03

Determining the bullet’s speed just before impact

According to the law of conservation of angular momentum,

Initialangularmomentum=Finalangularmomentum

L1=L2mvrsin(θ)=112mlL2+mbr2×ω0.003×0.25×v×sin(60)=112×4×0.52+0.003×0.252×10

Solving for v,

v=1300m/s

Hence, the speed of the bullet just before impact isv=1300m/s.

Therefore, by applying the law of conservation of angular momentum, the speed of the bullet just before impact can be found.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At the instant of Figure, a 2.0kg particle Phas a position vector r of magnitude 3.0mand angle θ1=45o and a velocity vectorv of magnitude 4.0m/sand angleθ2=300. ForceF, of magnitude 2.0Nand angleθ3=30oacts on P. All three vectors lie in the xy plane. About the origin, (a) What is the magnitude of the angular momentum of P? (b) What is the direction of the angular momentum of P? (c) What is the magnitude of the torque acting on P? (d)What is the direction of the torque acting on P?

The uniform rod (length0.60m,mass1.0kg)in Fig. 11-54 rotates in the

plane of the figure about an axis through one end, with a rotational inertia of0.12kg.m2

. As the rod swings through its lowest position, it collides with a0.20kg

putty wad that sticks to the end of the rod. If the rod’s angular speed just before

collision is, 2.4rad/swhat is the angular speed of the rod–putty system immediately after collision?

ForceF=(-8.0N)i^+(6.0N)j^acts on a particle with position vectorr=(3.0m)i^+(4.0m)j^. (a) What is the torque on the particle about the origin, in unit-vector notation? (b) What is the angle between the directions ofr andF?

In 1980, over San Francisco Bay, a large yo-yo was released from a crane. The 116kg yo-yo consisted of two uniform disks of radius 32cmconnected by an axle of radius 3.2cm(a) What was the magnitude of the acceleration of the yo-yo during its fall ? (b) What was the magnitude of the acceleration of the yo-yo during its rise? (c) What was the tension in the cord on which it rolled? (d) Was that tension near the cord’s limit of 52kN? Suppose you build a scaled-up version of the yo-yo (same shape and materials but larger). (e) Will the magnitude of your yo-yo’s acceleration as it falls be greater than, less than, or the same as that of the San Francisco yo-yo? (f) How about the tension in the cord?

Question: At time t, the vector r=4.0t2i^-(2.0t+6.0t2)j^ gives the position of a3 .0 kgparticle relative to the origin of ancoordinate system (is in meters and tis in seconds). (a) Find an expression for the torque acting on the particle relative to the origin. (b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, decreasing, or unchanging?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free