Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.30kg.m2about its central axis, is set spinning counter clockwise at 450rev/min. The second disk, with rotational inertia 6.60kgm2about its central axis, is set spinning counter clockwise at 900rev/min.They then couple together.

(a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 900 rev/min,

(b) what are their angular speed?

(c) What are their direction of rotation after they couple together?

Short Answer

Expert verified
  1. The angular speed of the system of the coupled disks if the second disk is spinning counter clockwise is750rev/min
  2. The angular speed of the system of the coupled disks if the second disk is spinning clockwise is450rev/min
  3. ω is clockwise

Step by step solution

01

Given

  1. The rotational inertia of first disk is,I1=3.3kg.m2
  2. The rotational inertia of second disk is,I2=6.6kg.m2
  3. The angular speed of the first disk,ω1=450rev/min
  4. The angular speed of the second disk is,ω2=900rev/min
02

To understand the concept

Using the conservation law of the angular momentum we can find the angular speed of the system after coupling. Then by using the sign convention, we can find the angular speed of the system when the second disk is spinning clockwise.

Formula:

The law of conservation of angular momentum,Li=Lf

03

Calculate the angular speed after coupling

(a)

The law of conservation of angular momentum gives,Li=Lf.

Angular momentum of the system before coupling = Angular momentum of the system after coupling

I1ω1+I2ω2=(I1+I2)ωω=I1ω1+I2ω2I1+I2ω=(3.3)(450)+(6.6)(900)3.3+6.6ω=750rev/min

04

Calculate the angular speed

(b)

If the second disk is spinning clockwise, its angular speed would be 900rev/min.

So, the angular speed of the system is

ω=(3.3)(450)+(6.6)(900)3.3+6.6ω=450rev/min

05

Find their direction of rotation after they couple together

(c)

The minus sign indicates thatω is clockwise, that is, in the direction of the second disk’s initial angular velocity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A uniform rod rotates in a horizontal plane about a vertical axis through one end. The rod is 6.00 m long, weighs 240 rev/minand rotates atCalculate (a) its rotational inertia about the axis of rotation? (b) the magnitude of its angular momentum about that axis?

Two 2.00kgballs are attached to the ends of a thin rod of length role="math" localid="1661007264498" 50.0cmand negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (In Figure), 50.0gwad of wet putty drops onto one of the balls, hitting it with a speed of3.00m/s and then sticking to it.

(a) What is the angular speed of the system just after the putty wad hits?

(b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before?

(c) Through what angle will the system rotate before it momentarily stops?

Question: At time t, the vector r=4.0t2i^-(2.0t+6.0t2)j^ gives the position of a3 .0 kgparticle relative to the origin of ancoordinate system (is in meters and tis in seconds). (a) Find an expression for the torque acting on the particle relative to the origin. (b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, decreasing, or unchanging?

Figure shows three rotating, uniform disks that are coupled by belts. One belt runs around the rims of disks Aand C. Another belt runs around a central hub on disk Aand the rim of disk B. The belts move smoothly without slippage on the rims and hub. Disk Ahas radius R; its hub has radius0.5000R ; disk Bhas radius 0.2500R; and disk Chas radius 2.000R.Disks Band Chave the same density (mass per unit volume) and thickness. What is the ratio of the magnitude of the angular momentum of disk Cto that of disk B?

A solid sphere of weight 36.0 N rolls up an incline at an angle of30.0°. At the bottom of the incline the center of mass of the sphere has a translational speed of 4.90 m/s. (a) What is the kinetic energy of the sphere at the bottom of the incline? (b) How far does the sphere travel up along the incline? (c) Does the answer to (b) depend on the sphere’s mass?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free