Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the instant of Figure, two particles move in an xy plane. Particle P1has mass 6.5kgand speed v1 = 202m/s, and it is at distance d1 = 105mfrom point O. Particle P2has mass 3.1kgand speed v2 = 3.6m/sand it is at distance d2 = 2.8mfrom point O. (a) What is the magnitude of the net angular momentum of the two particles about O? (b) What is the direction of the net angular momentum of the two particles about O?

Short Answer

Expert verified
  1. The magnitude of the net angular momentum of the two particles about O
    L=9.8kgm2s
  2. The direction of the net angular momentum of the two particles about O is along positive z axis.

Step by step solution

01

Identification of given data

m1 = 6.5 kg

v1 = 2.2 m/s

d1 = 1.5 m

m2 = 3.1 kg

v2 = 3.6 m/s

d2 = 2.8 m

02

To understand the concept angular momentum

The problem deals with the calculation of angular momentum. The angular momentum of a rigid object is product of the moment of inertia and the angular velocity. It is analogous to linear momentum. The angular momentum can be found using right-hand rule. The counterclockwise rotation of the particles position gives positive angular momentum and clockwise rotation of the particles position gives negative angular momentum.

Formulae:

l=rmv

03

(a) Determining the magnitude of the net angular momentum of the two particles

The magnitude of the angular momentum of the particle P1 is

l1=d1m1v1=1.5m×6.5kg×2.2m/s=21.45kgm2s

By using right hand rule for vector product, L1is negative or along –z axis.

The magnitude of the angular momentum of the particle P2 is

l2=d2m2v2=2.8m×3.1kg×3.6m/s=31.25kgm2s

By using right hand rule for vector product, l2is positive or along +z axis.

The two angular momentum vectors are in opposite direction. Hence, magnitude of angular momentum difference gives the magnitude of net angular momentum.

L=l2-l1=31.25kgm2s-21.45kgm2s=9.8kgm2s

04

(b) Determining the direction of the net angular momentum of the two particles

The net angular momentum is positive. Hence, it is going along +z axis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A uniform wheel of mass 10.0 kgand radius 0.400 mis mounted rigidly on a mass less axle through its center (Fig. 11-62). The radius of the axle is 0.200 m, and the rotational inertia of the wheel–axle combination about its central axis is0.600 kg.m2. The wheel is initially at rest at the top of a surface that is inclined at angleθ=30.0°. with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel–axle combination has moved down the surface by 2.00 m, what are (a) its rotational kinetic energy and (b) its translational kinetic energy?

Two particles, each of mass 2.90×10-4kgand speed 5.46 m/s, travel in opposite directions along parallel lines separated by 4.20 cm. (a) What is the magnitude Lof the angular momentum of the two-particle system around a point midway between the two lines? (b) Is the value different for a different location of the point? If the direction of either particle is reversed, what are the answers for (c) part (a) and (d) part (b)?

Question: A car has fourwheels. When the car is moving, what fraction of its total kinetic energy is due to rotation of the wheels about their axles? Assume that the wheels have the same rotational inertia as uniform disks of the same mass and size. Why do you not need to know the radius of the wheels?

A rectangular block, with face lengths a=35cm andb=45cm , is to be suspended on a thin horizontal rod running through a narrow hole in the block. The block is then to be set swinging about the rod like a pendulum, through small angles so that it is in SHM. Figure shows one possible position of the hole, at distancer from the block’s center, along a line connecting the center with a corner.

  1. Plot the period of the pendulum versus distancer along that line such that the minimum in the curve is apparent.
  2. For what value of rdoes that minimum occur? There is actually a line of points around the block’s center for which the period of swinging has the same minimum value.
  3. What shape does that line make?

Question: Figure shows the potential energy U (x) of a solid ball that can roll along an xaxis. The scale on the Uaxis is set by Us =100j. The ball is uniform, rolls smoothly, and has a mass of 0.400 kgIt is released at x = 7.0 mheaded in the negative direction of the xaxis with a mechanical energy of 75 J (a) If the ball can reach x = 0 m, what is its speed there, and if it cannot, what is its turning point? Suppose, instead, it is headed in the positive direction of the xaxis when it is released at x = 7.0 m with 75J(b) If the ball can reach x = 13m, what is its speed there, and if it cannot, what is its turning point?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free