Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

ForceF=(-8.0N)i^+(6.0N)j^acts on a particle with position vectorr=(3.0m)i^+(4.0m)j^. (a) What is the torque on the particle about the origin, in unit-vector notation? (b) What is the angle between the directions ofr andF?

Short Answer

Expert verified
  1. Torque on particle about the origin in unit vector notation is(50)k^Nm
  2. Angle between directions ofrandF,ϕ=90

Step by step solution

01

Identification of given data

F=-8i^+6j^+0k^Nr=3i^+4j^+0k^m

02

To understand the concept of torque and angle

Using the concept of torque, the unknown torque value is calculated. As per the concept, the torque acting on a body is due to the tangential force acting on a body along a radial path of the object in a circular motion. Thus, the cross-vector of the force and radial vector of the object will give the torque value.

Formulae:

The position vector in a 3-D diagram,r=xi^+yj^+zk^

The force vector in 3-D,F=Fxi^+Fyj^+Fzk^

The torque acting on the body due to the tangential force,

τ=r×F=ijkxyzFxFyFz=yFz-zFyi^+zFx-xFzj^+xFy-yFxk^

r×F=rFsinϕ …(i)

r=x2+y2andF=Fx2+Fy2

03

(a) Determining the torque on the particle about the origin

τ=r×Fτ=ijk340-860=0i^Nm+0j^Nm+18+32k^Nm=0i^+0j^+50k^Nm

04

(b) Determining the angle between the directions of r⇀ and F⇀

We know,

r=x2+y2=64m2+36m2=10mF=Fx2+Fy2=9+6N=5Nτ=rF=50Nm

r×F=50Nm

Using equation (i)

r×F=rFsinϕ50Nm=50Nm×sinϕsinϕ=1ϕ=90o

The angle between the directions of rand F isϕ=90o

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a long jump, an athlete leaves the ground with an initial angular momentum that tends to rotate her body forward, threatening to ruin her landing. To counter this tendency, she rotates her outstretched arms to “take up” the angular momentum (In figure). In 0.700s, one arm sweeps throughrole="math" localid="1660995016580" 0.500revand the other arms weeps through1.000rev. Treat each arm as a thin rod of mass4.0kgand length0.6mrotating around one end. In the athlete’s reference frame, what is the magnitude of the total angular momentum of the arms around the common rotation axis through the shoulders?

Windmill motion of the arms during a long jump helps maintain body orientation for a proper landing.

Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.30kg.m2about its central axis, is set spinning counter clockwise at 450rev/min. The second disk, with rotational inertia 6.60kgm2about its central axis, is set spinning counter clockwise at 900rev/min.They then couple together.

(a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 900 rev/min,

(b) what are their angular speed?

(c) What are their direction of rotation after they couple together?

In Figure, a small 50g block slides down a frictionless surface through height h=20cmand then sticks to a uniform rod of mass 100gand length40cm . The rod pivots about point Othrough angle θbefore momentarily stopping. Findθ

Question: Non-uniform ball. In Figure, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m The initial height of the ball is h =0.36m. At the loop bottom, the magnitude of the normal force on the ball is 2.00 mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form I=βMR2, butβis not 0.4as it is for a ball of uniform density. Determine β.

Figure shows an overhead view of a ring that can rotate about its centre like a merry- go-round. Its outer radius R2isrole="math" localid="1660990374636" 0.800m, its inner radiusR1 isR2/2.00, its massM is8.00kg, and the mass of the crossbars at its centre is negligible. It initially rotates at an angular speed of 8.00 rad/s with a cat of massm=M/4.00on its outer edge, at radiusR2. By how much does the cat increase the kinetic energy of the cat ring system if the cat crawls to the inner edge, at radius?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free