Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In unit-vector notation, what is the torque about the origin on a jar of jalapeno peppers located at coordinates (3.0m,-2.0m,4.0m) due to (a) force F1=(3.0N)i^-(4.0N)j^+(5.0N)k^,(b) force F2=(-3.0N)i^-(4.0N)j^+(5.0N)k^, (c) the vector sum of F1andF2? (d) Repeat part (c) for the torque about the point with coordinates (3.0m, 2.0m, 4.0m).

Short Answer

Expert verified
  1. Torque on the jar due to F1 is6i^+-3j^+-6k^Nm
  2. Torque on the jar due to F2 is26i^+3j^+-18k^Nm
  3. Torque on the jar due to F1 + F2 is32i^+-24k^Nm
  4. Torque about the given point is 0Nm

Step by step solution

01

Identification of given data

Location of jar (3.0m, -2.0m, 4.0m)

F1=3i^-4j^+5k^NF2=3i^-4j^-5k^N

02

To understand the concept of torque

Using the concept of torque, the unknown torque value is calculated. As per the concept, the torque acting on a body is due to the tangential force acting on a body along a radial path of the object in a circular motion. Thus, the cross-vector of the force and radial vector of the object will give the torque value.

Formulae:

The position vector in a 3-D diagram,r=xi^+yj^+zk^

The force vector in 3-D,F=Fxi^+Fyj^+Fzk^

The torque acting on the body due to the tangential force,

τ=r×F=ijkxyzFxFyFz=yFz-zFyi^+zFx-xFzj^+xFy-yFxk^

03

(a) Determining the torque about origin due to F⇀1

τ=r×Fτ=ijk3-243-45=-10+16Nmi^+12-15Nmj^+-12+6Nmk^=6i^+-3j^+-6k^Nm

04

(b) Determining the torque about origin due to F⇀2

τ=r×Fτ=ijk3-24-3-4-5=10+16Nmi^+-12+15Nmj^+-12-6Nmk^=26i^+3j^+18k^Nm

05

(c) Determining the torque about origin due to F⇀1+F⇀2

F1+F2=-8j^Nτ=r×F1+F2=ijk3-240-80=32i^+0j^+-24+0k^=32i^+-24k^Nm

06

(d) Determining the torque about the point with coordinates (3.0m, 2.0m, 4.0m) due to F⇀1+F⇀2

So,r=r-r0

r'=0i^-4j^m+0k^

F1+F2=-8j^N

Torque,

τ=r×F1+F2

τ=r×F1+F2=ijk0-400-80=0i^Nm+0j^Nm+0k^Nm=0Nm

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.30kg.m2about its central axis, is set spinning counter clockwise at 450rev/min. The second disk, with rotational inertia 6.60kgm2about its central axis, is set spinning counter clockwise at 900rev/min.They then couple together.

(a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 900 rev/min,

(b) what are their angular speed?

(c) What are their direction of rotation after they couple together?

A wheel rotates clockwise about its central axis with an angular momentum of 600kg.m2/s. At time t=0, a torque of magnitude 50 N.mis applied to the wheel to reverse the rotation. At what time tis the angular speed zero?

The rotor of an electric motor has rotational inertia Im=2.0×103kgm2about its central axis. The motor is used to change the orientation of the space probe in which it is mounted. The motor axis is mounted along the central axis of the probe; the probe has rotational inertiarole="math" localid="1660985808865" Ip=12kg.m2about this axis. Calculate the number of revolutions of the rotor required to turn the probe through30°about its central axis.

A bowler throws a bowling ball of radius R=11cmalong a lane. The ball (in figure) slides on the lane with initial speed vcom,0=8.5m/sand initial angular speed ω0=0. The coefficient of kinetic friction between the ball and the lane is. The kinetic frictional forcefkacting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed vcom has decreased enough and angular speed v has increased enough, the ball stops sliding and then rolls smoothly.

(a) What then is vcomin terms ofV? During the sliding (b) What is the ball’s linear acceleration (c) What is the angular acceleration? (d) How long does the ball slide? (e) How far does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins?

Force F=(2.0N)i^-(3.0N)k^acts on a pebble with position vectorr=(0.50m)j^-(2.0m)k^relative to the origin. In unit- vector notation, (a) What is the resulting torque on the pebble about the origin and (b) What is the resulting torque on the pebble about the point(2.0m,0,-3.0m)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free