Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 2.50 kgparticle that is moving horizontally over a floor with velocity(3.00m/s)j^ undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity(4.50m/s)i^. The collision occurs at xycoordinates(-0.500m,-0.100m). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?

Short Answer

Expert verified

The angular momentum of the stuck-together particles with respect to the origin is5.55kg.m2/sk^.

Step by step solution

01

Step 1: Given Data

Particle A of mass 2.50 kg with velocity-3.00m/si^

Particle B of mass 4.00 kg with velocity4.50m/sj^

The collision occurs at-0.500m,-0.100m

02

Determining the concept

Using the formula,L=m×r×v, find the angular momentum of the stuck-together particles with respect to the origin.

Formula is as follow:

L=m×r×v

Where, m is mass, r is radius, vis velocity and L is angular momentum.

03

Determining the angular momentum of the stuck-together particles with respect to the origin

The total angular momentum before the collision is,

Li=mA×rA×vA+mB×rB×vBLi=0.5m2.5kg3.0m/s+0.1m4.0kg4.5m/sk^

The final angular momentum of the stuck-together particles after the collision, which is a measure relative to the origin is,

Lf=Li=5.55kg.m2/sk^

Hence,the angular momentum of the stuck-together particles with respect to the origin is5.55kg.m2/sk^.

Therefore, using the formula, L=mr×v, and conservation of angular momentum, the angular momentum of the stuck-together particles with respect to the origin can be found.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wheel rotates clockwise about its central axis with an angular momentum of 600kg.m2/s. At time t=0, a torque of magnitude 50 N.mis applied to the wheel to reverse the rotation. At what time tis the angular speed zero?

In Figure, a small, solid, uniform ball is to be shot from point P so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance d from the right edge of the plateau. The vertical heights areh1=5.00 cmand h2=1.60 cm. With what speed must the ball be shot at point P for it to land atd=6.00 cm?

Figure 11-24 shows two particles Aand Bat xyzcoordinates (1 m, 1 m, 0) and (1 m, 0, 1 m). Acting on each particle are three numbered forces, all of the same magnitude and each directed parallel to an axis. (a) Which of the forces produce a torque about the origin that is directed parallel to y? (b) Rank the forces according to the magnitudes of the torques they produce on the particles about the origin, greatest first.

At the instant of Figure, a 2.0kg particle Phas a position vector r of magnitude 3.0mand angle θ1=45o and a velocity vectorv of magnitude 4.0m/sand angleθ2=300. ForceF, of magnitude 2.0Nand angleθ3=30oacts on P. All three vectors lie in the xy plane. About the origin, (a) What is the magnitude of the angular momentum of P? (b) What is the direction of the angular momentum of P? (c) What is the magnitude of the torque acting on P? (d)What is the direction of the torque acting on P?

A solid sphere of weight 36.0 N rolls up an incline at an angle of30.0°. At the bottom of the incline the center of mass of the sphere has a translational speed of 4.90 m/s. (a) What is the kinetic energy of the sphere at the bottom of the incline? (b) How far does the sphere travel up along the incline? (c) Does the answer to (b) depend on the sphere’s mass?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free