Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a playground, there is a small merry-go-round of radius 1.20 mand mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kgruns at a speed of 3.00 m/salong a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.

Short Answer

Expert verified
  1. Rotational Inertia of merry go round about its axis of rotation is 149 kg.m2.
  2. The magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round is 158 kg.m2/s.
  3. The angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round is 0.744 rad/s2.

Step by step solution

01

Step 1: Given

m=180kgk=91cmM=44kgr=1.20mv=3m/s

02

Determining the concept

Use the formula for rotational inertia in terms of mass and radius of gyration to find the rotational inertia. Using the formula for angular momentum in terms of mass, velocity and radius, find the angular momentum. Finally, use conservation of angular momentum to find angular velocity.According tothe conservation of momentum, momentum of a system is constant if no external forces are acting on the system.

Formulaare as follow:

I=m×k2L=m×v×r

where,r is radius, v is velocity, m is mass, Lis angular momentum, l is moment of inertia and risradius of gyration.

03

Determining the rotational Inertia of merry go round about its axis of rotation

(a)

To find rotational inertia, use the following formula:

I=m×k2I=180×0.912I=149kg.m2

Hence, rotational Inertia of merry go round about its axis of rotation is 149 kg.m2.

04

 Determining the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round

(b)

Now, to find angular momentum,

L=M×r×vL=44×3×1.2

So,

data-custom-editor="chemistry" L=158kg.m2/s

Hence, the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round is 158 kg.m2/s.

05

 Determining the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round

(c)

Now, to find angular velocity, use conservation of momentum,

Lf=LchildLf=I+mr2ωLchild=mvrmvr=I+mr2ωω=mvrI+mr2

So,

ω=158149+44+1.22=0.744rad/sω=0.744rad/s

Hence,the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round is 0.744 rad/s2.

Therefore, use the formula for rotational inertia in terms of mass and radius of gyration to find the rotational inertia. Using the formula for angular momentum in terms of mass, velocity and radius, the angular momentum can be found. Finally, conservation of angular momentum can be used to find angular velocity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A ballerina begins a tour jet (Figure a) with angular speed ωiand a rotational inertia consisting of two parts : role="math" localid="1661005078220" Ileg= 1.44 kg.m2 for her leg extended outward at angle θ= 90.0°to her body and Itrunk= 0.660 kg.m2 for the rest of her body (primarily her trunk). Near her maximum height she holds both legs at angle30.0°to her body and has angular speedωf(Figure b). Assuming that Ihas not changed, what is the ratioωfωi ?

(a) Initial phase of a tour jet: large rotational inertia and small angular speed. (b) Later phase: smaller rotational inertia and larger angular speed.

A 2.50 kgparticle that is moving horizontally over a floor with velocity(3.00m/s)j^ undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity(4.50m/s)i^. The collision occurs at xycoordinates(-0.500m,-0.100m). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?

A uniform solid sphere rolls down in an incline (a) what must be the incline angle if the linear acceleration of the center of the sphere is tohave a magnitude of the 0.10g? (b) If the frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to 0.10g? why?

In Figure, a small, solid, uniform ball is to be shot from point P so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance d from the right edge of the plateau. The vertical heights areh1=5.00 cmand h2=1.60 cm. With what speed must the ball be shot at point P for it to land atd=6.00 cm?

Question: Figure shows the potential energy U (x) of a solid ball that can roll along an xaxis. The scale on the Uaxis is set by Us =100j. The ball is uniform, rolls smoothly, and has a mass of 0.400 kgIt is released at x = 7.0 mheaded in the negative direction of the xaxis with a mechanical energy of 75 J (a) If the ball can reach x = 0 m, what is its speed there, and if it cannot, what is its turning point? Suppose, instead, it is headed in the positive direction of the xaxis when it is released at x = 7.0 m with 75J(b) If the ball can reach x = 13m, what is its speed there, and if it cannot, what is its turning point?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free