Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at 15.0. It momentarily stops when it has rolled 1.50 malong the ramp. What was its initial speed?

Short Answer

Expert verified

Initial speed of the ball is V=2.33m/s.

Step by step solution

01

Step 1: Given

θ=15.0°x=1.50m

02

Determining the concept

To find the initial velocity, use the law of conservation of energy. According to the law of conservation of energy, energy can neither be created, nor be destroyed.

Formula is as follow:

Conservation of mechanical energy,

PE1+KE1=PE2+KE2

Where, PE is potential energy and KEis kinetic energy.

03

Determining the initial speed of the ball


Now, to find the initial speed, use conservation of energy. At height h, solid ball has only potential energy, whereas at the bottom, there is translational kinetic energy and rotational kinetic energy.

From the diagram,

sin15=h1.5h=1.5sin15h=0.3882m

Now, the solid ball has inertia about center as given below,

I=25mr2

So, conservation of energy,

mgh=0.5×m×vi2+0.5×I×wi2mgh=0.5×m×vi2+0.5×25×m×r2×wi2mgh=710mVi2gh=710Vi29.81×0.3882=710Vi2

So,

data-custom-editor="chemistry" Vi=2.33m/s

Hence,initial speed of the ball is data-custom-editor="chemistry" V=2.33m/s.

Therefore, to find the initial velocity, conservation of energy can be used along with the formula for potential energy, linear kinetic energy, and rotational kinetic energy.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A top spins at 30rev/sabout an axis that makes an angle of 30°with the vertical. The mass of the top is 50kg, its rotational inertia about its central axis is 5.0×10-4kg.m2, and its centre of mass is 4.0cmfrom the pivot point. If the spin is clockwise from an overhead view,

(a) what are the precession rate?

(b) what are the direction of the precession as viewed from overhead?

Question: A particle is to move in an xyplane, clockwise around the origin as seen from the positive side of the zaxis. In unit-vector notation, what torque acts on the particle (aIf the magnitude of its angular momentum about the origin is4.0kgm2/s?? (b) If the magnitude of its angular momentum about the origin is4.0t2kgm2/s?(b) If the magnitude of its angular momentum about the origin is 4.0tkgm2/s?(d)If the magnitude of its angular momentum about the origin is 4.0/t2kgm2/s?

In a playground, there is a small merry-go-round of radius 1.20 mand mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kgruns at a speed of 3.00 m/salong a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.

Question: In Figure, a solid cylinder of radius 10 and mass 12 kgstarts from rest and rolls without slipping a distance L =6.0 mdown a roof that is inclined at the angle θ=300. (a) What is the angular speed of the cylinder about its centre as it leaves the roof? (b) The roof’s edge is at height H = 5.0mHow far horizontally from the roof’s edge does the cylinder hit the level ground?

Figure 11-27 shows an overheadview of a rectangular slab that can

spin like a merry-go-round about its center at O. Also shown are seven

paths along which wads of bubble gum can be thrown (all with the

same speed and mass) to stick onto the stationary slab. (a) Rank the paths according to the angular speed that the slab (and gum) will have after the gum sticks, greatest first. (b) For which paths will the angular momentum of the slab(and gum) about Obe negative from the view of Fig. 11-27?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free