Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A spaceship approaches Earth at a speed of 0.42c. A light on the front of the ship appears red (wavelength 650 nm) to passengers on the ship. What (a) wavelength and (b) color (blue, green, or yellow) would it appear to an observer on Earth?

Short Answer

Expert verified

(a) The wavelength of light for observer on Earth is 415nm.

(b) The color of light for observer on Earth is blue.

Step by step solution

01

Identification of given data

The wavelength of light is λo=650nm.

The speed of spaceship is v=0.42c

The wavelength of light for observer on Earth is calculated by using the formula for Doppler effect in light and color of light is decided by wavelength of light.

02

Determination of wavelength of light for observer on Earth

(a)

The wavelength of light for observer on Earth is given as

λ=λo1+vc1-vc

Here, c is the speed of light and its value is 3×108ms.

Substitute all the values in the above equation.

λ=615mm1+0.42cc1-0.42ccλ=415nm

Therefore, the wavelength of light for observer on Earth is 415nm.

λ=λo1+vc1-vc

03

Identification for color by wavelength

(b)

The wavelength of the light falls between wavelength of blue and green on visible spectrum but it is nearer to blue color wavelength so color of light for observer on Earth is blue.

Therefore, the colour of light for observer on Earth is blue.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The length of a spaceship is measured to be exactly half its rest length. (a) To three significant figures, what is the speed parameter βof the spaceship relative to the observer’s frame? (b) By what factor do the spaceship’s clocks run slow relative to clocks in the observer’s frame?

An armada of spaceships that is 1.00 ly long (as measured in its rest frame) moves with speed 0.800c relative to a ground station in frame S.A messenger travels from the rear of the armada to the front with a speed of 0.950c relative to S. How long does the trip take as measured (a) in the rest frame of the messenger, (b) in the rest frame of the armada, and (c) by an observer in the ground frame S?

Find the speed parameter of a particle that takes 2.0 y longer than light to travel a distance of 6.0 ly.

Figure 37-21 shows one of four star cruisers that are in a race. As each cruiser passes the starting line, a shuttle craft leaves the cruiser and races toward the finish line. You, judging the race, are stationary relative to the starting and finish lines. The speeds vc of the cruisers relative to you and the speeds of the shuttle craft relative to their respective starships are, in that order, (1) 0.70c, 0.40c; (2) 0.40c, 0.70c; (3) 0.20c, 0.90c; (4) 0.50c, 0.60c. (a) Rank the shuttle craft according to their speeds relative to you, greatest first. (b) Rank the shuttle craft according to the distances their pilots measure from the starting line to the finish line, greatest first. (c) Each starship sends a signal to its shuttle craft at a certain frequency f0 as measured on board the starship. Rank the shuttle craft according to the frequencies they detect, greatest first.

Superluminal jets. Figure 37-29a shows the path taken by a knot in a jet of ionized gas that has been expelled from a galaxy. The knot travels at constant velocity v at angleθ from the direction of Earth. The knot occasionally emits a burst of light, which is eventually detected on Earth. Two bursts are indicated in Fig. 37-29a, separated by timet as measured in a stationary frame near the bursts. The bursts are shown in Fig. 37-29b as if they were photographed on the same piece of film, first when light from burst 1 arrived on Earth and then later when light from burst 2 arrived. The apparent distanceD¯app traveled by the knot between the two bursts is the distance across an Earth-observer’s view of the knot’s path. The apparent timeT¯app between the bursts is the difference in the arrival times of the light from them. The apparent speed of the knot is then V¯app=D¯app/T¯app. In terms of v, t, andθ , what are (a)D¯app and (b)T¯app ? (c) EvaluateV¯app forv=0.980c and θ=30.0. When superluminal (faster than light) jets were first observed, they seemed to defy special relativity—at least until the correct geometry (Fig. 37-29a) was understood.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free